Your browser doesn't support javascript.
loading
Study on the efficient removal of azo dyes by heterogeneous photo-Fenton process with 3D flower-like layered double hydroxide.
Bao, Siqi; Shi, Yuqi; Zhang, Youshan; He, Longjie; Yu, Wangyang; Chen, Zexiang; Wu, Yunfeng; Li, Leijiao.
Afiliação
  • Bao S; School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun 130022, China; Jilin Provincial Science and Technology Innovation Center of Optical Materials, and Chemistry, Changchun 130022, China; and Joint Sino-Russian Laboratory of Optical Materials a
  • Shi Y; School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun 130022, China; Jilin Provincial Science and Technology Innovation Center of Optical Materials, and Chemistry, Changchun 130022, China; and Joint Sino-Russian Laboratory of Optical Materials a
  • Zhang Y; School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun 130022, China; Jilin Provincial Science and Technology Innovation Center of Optical Materials, and Chemistry, Changchun 130022, China; and Joint Sino-Russian Laboratory of Optical Materials a
  • He L; School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun 130022, China; Jilin Provincial Science and Technology Innovation Center of Optical Materials, and Chemistry, Changchun 130022, China; and Joint Sino-Russian Laboratory of Optical Materials a
  • Yu W; School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun 130022, China; Jilin Provincial Science and Technology Innovation Center of Optical Materials, and Chemistry, Changchun 130022, China; and Joint Sino-Russian Laboratory of Optical Materials a
  • Chen Z; School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun 130022, China; Jilin Provincial Science and Technology Innovation Center of Optical Materials, and Chemistry, Changchun 130022, China; and Joint Sino-Russian Laboratory of Optical Materials a
  • Wu Y; School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun 130022, China; Jilin Provincial Science and Technology Innovation Center of Optical Materials, and Chemistry, Changchun 130022, China; and Joint Sino-Russian Laboratory of Optical Materials a
  • Li L; School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun 130022, China; Jilin Provincial Science and Technology Innovation Center of Optical Materials, and Chemistry, Changchun 130022, China; and Joint Sino-Russian Laboratory of Optical Materials a
Water Sci Technol ; 81(11): 2368-2380, 2020 Jun.
Article em En | MEDLINE | ID: mdl-32784280
ABSTRACT
As organic dyes are the main pollutants in water pollution, seeking effective removal solutions is urgent for humans and the environment. A novel environmentally friendly three-dimensional CoFe-LDHs (3D CoFe-LDHs) catalyst was synthesized by one-step hydrothermal method. Scanning electron microscopy, energy dispersive spectroscopy, Fourier transform infrared spectra, X-ray diffraction, X-ray photoelectron spectroscopy, Brunauer-Emmett-Teller technique as well as UV-Vis diffuse reflectance spectra were used to characterize the prepared samples. The experimental results revealed that 3D CoFe-LDHs exhibited a rapid decolorization of methyl orange and Rhodamine B by heterogeneous photo-Fenton process after reaching the adsorption equilibrium, and the final decolorization efficiency reached 91.18% and 93.56%, respectively. On the contrary, the decolorizing effect of 3D CoFe-LDHs on neutral blue was relatively weak. The initial concentrations of azo dyes, pH and H2O2 concentration affected the decolorization of dyes and the catalyst maintained excellent reusability and stability after reuse over five cycles. The quenching experiments found that •OH, •O2 - and h+ were the main active substances and reaction mechanisms were further proposed. The study suggests that the synergistic effect of photocatalysis and Fenton oxidation process significantly improved the removal of azo dyes and the synthesized catalyst had potentially promising applications for difficult-to-biodegrade organic pollutants in wastewater.
Assuntos

Texto completo: 1 Bases de dados: MEDLINE Assunto principal: Compostos Azo / Peróxido de Hidrogênio Idioma: En Revista: Water Sci Technol Assunto da revista: SAUDE AMBIENTAL / TOXICOLOGIA Ano de publicação: 2020 Tipo de documento: Article

Texto completo: 1 Bases de dados: MEDLINE Assunto principal: Compostos Azo / Peróxido de Hidrogênio Idioma: En Revista: Water Sci Technol Assunto da revista: SAUDE AMBIENTAL / TOXICOLOGIA Ano de publicação: 2020 Tipo de documento: Article