Your browser doesn't support javascript.
loading
The Cold-Unfolded State Is Expanded but Contains Long- and Medium-Range Contacts and Is Poorly Described by Homopolymer Models.
Stenzoski, Natalie E; Zou, Junjie; Piserchio, Andrea; Ghose, Ranajeet; Holehouse, Alex S; Raleigh, Daniel P.
Afiliação
  • Stenzoski NE; Graduate Program in Biochemistry & Structural Biology, Stony Brook University, Stony Brook, New York 11794-3400, United States.
  • Zou J; Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States.
  • Piserchio A; Department of Chemistry and Biochemistry, The City College of New York, New York, New York 10031, United States.
  • Ghose R; Department of Chemistry and Biochemistry, The City College of New York, New York, New York 10031, United States.
  • Holehouse AS; Graduate Programs in Biochemistry, Chemistry and Physics, The Graduate Center of CUNY, New York, New York 10016, United States.
  • Raleigh DP; Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110, United States.
Biochemistry ; 59(36): 3290-3299, 2020 09 15.
Article em En | MEDLINE | ID: mdl-32786415
ABSTRACT
Cold unfolding of proteins is predicted by the Gibbs-Helmholtz equation and is thought to be driven by a strongly temperature-dependent interaction of protein nonpolar groups with water. Studies of the cold-unfolded state provide insight into protein energetics, partially structured states, and folding cooperativity and are of practical interest in biotechnology. However, structural characterization of the cold-unfolded state is much less extensive than studies of thermally or chemically denatured unfolded states, in large part because the midpoint of the cold unfolding transition is usually below freezing. We exploit a rationally designed point mutation (I98A) in the hydrophobic core of the C-terminal domain of the ribosomal protein L9 that allows the cold denatured state ensemble to be observed above 0 °C at near neutral pH and ambient pressure in the absence of added denaturants. A combined approach consisting of paramagnetic relaxation enhancement measurements, analysis of small-angle X-ray scattering data, all-atom simulations, and polymer theory provides a detailed description of the cold-unfolded state. Despite a globally expanded ensemble, as determined by small-angle X-ray scattering, sequence-specific medium- and long-range interactions in the cold-unfolded state give rise to deviations from homopolymer-like behavior. Our results reveal that the cold-denatured state is heterogeneous with local and long-range intramolecular interactions that may prime the folded state and also demonstrate that significant long-range interactions are compatible with expanded unfolded ensembles. The work also highlights the limitations of homopolymer-based descriptions of unfolded states of proteins.
Assuntos

Texto completo: 1 Bases de dados: MEDLINE Assunto principal: Proteínas Ribossômicas / Modelos Moleculares / Dobramento de Proteína / Mutação Puntual Tipo de estudo: Prognostic_studies Idioma: En Revista: Biochemistry Ano de publicação: 2020 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Bases de dados: MEDLINE Assunto principal: Proteínas Ribossômicas / Modelos Moleculares / Dobramento de Proteína / Mutação Puntual Tipo de estudo: Prognostic_studies Idioma: En Revista: Biochemistry Ano de publicação: 2020 Tipo de documento: Article País de afiliação: Estados Unidos