Your browser doesn't support javascript.
loading
Mobility Assessment of the Supraspinatus in a Porcine Cadaver Model Using a Sensor-Enhanced, Arthroscopic Grasper.
Porschke, Felix; Luecke, Christoph; Guehring, Thorsten; Weiss, Christel; Studier-Fischer, Stefan; Gruetzner, Paul Alfred; Schnetzke, Marc.
Afiliação
  • Porschke F; BG Trauma Center Ludwigshafen at Heidelberg University Hospital, Ludwig-Guttmann-Straße 13, 67071, Ludwigshafen, Germany.
  • Luecke C; BG Trauma Center Ludwigshafen at Heidelberg University Hospital, Ludwig-Guttmann-Straße 13, 67071, Ludwigshafen, Germany.
  • Guehring T; Arcus Sportklinik, Rastatter Str. 17-19, 75179, Pforzheim, Germany.
  • Weiss C; Department of Medical Statistics, University Medicine Mannheim, Medical Faculty Mannheim of the University of Heidelberg, 68167, Mannheim, Germany.
  • Studier-Fischer S; BG Trauma Center Ludwigshafen at Heidelberg University Hospital, Ludwig-Guttmann-Straße 13, 67071, Ludwigshafen, Germany.
  • Gruetzner PA; BG Trauma Center Ludwigshafen at Heidelberg University Hospital, Ludwig-Guttmann-Straße 13, 67071, Ludwigshafen, Germany.
  • Schnetzke M; BG Trauma Center Ludwigshafen at Heidelberg University Hospital, Ludwig-Guttmann-Straße 13, 67071, Ludwigshafen, Germany. marc.schnetzke@atos.de.
Ann Biomed Eng ; 49(2): 617-626, 2021 Feb.
Article em En | MEDLINE | ID: mdl-32789712
ABSTRACT
Tendon mobility is highly relevant in rotator cuff surgery. Objective data about rotator cuff mobility is rare. Tendon mobility still needs to be evaluated subjectively by the surgeon. This study aims to establish a porcine animal model for mobility analysis of the supraspinatus. In this context, we introduce a sensor-enhanced, arthroscopic grasper (SEAG) suitable for objective intraoperative measurements of tendon mobility in clinical praxis. Tendon mobility of 15 fresh porcine cadaver shoulders with artificial rotator cuff tears was evaluated using the SEAG. Mobility characteristics (load-displacement curves, maximum load, stiffness) were studied and inter- and intraobserver agreement (intraclass correlation coefficient (ICC)) were tested. Factors with a potential adverse effect (plastic deformation and rigor mortis) were also evaluated. All shoulders showed characteristic reproducible load-displacement curves with a nonlinear part at the start, followed by a linear part. Mean maximum load was 28.6 N ± 12.5. Mean stiffness was 6.0 N/mm ± 2.6. We found substantial interobserver agreement (ICC 0.672) and nearly perfect intraobserver agreement (0.944) for maximum load measurement. Inter- (0.021) and intraobserver (0.774) agreement for stiffness was lower. Plastic deformation and rigor mortis were excluded. The animal model demonstrates reliable and in vivo-like measurements of tendon mobility. The SEAG is a reliable tool for tendon mobility assessment.
Assuntos
Palavras-chave

Texto completo: 1 Bases de dados: MEDLINE Assunto principal: Artroscopia / Manguito Rotador / Modelos Animais de Doenças / Lesões do Manguito Rotador Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Revista: Ann Biomed Eng Ano de publicação: 2021 Tipo de documento: Article País de afiliação: Alemanha

Texto completo: 1 Bases de dados: MEDLINE Assunto principal: Artroscopia / Manguito Rotador / Modelos Animais de Doenças / Lesões do Manguito Rotador Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Revista: Ann Biomed Eng Ano de publicação: 2021 Tipo de documento: Article País de afiliação: Alemanha