Your browser doesn't support javascript.
loading
Thresholds for ecological responses to global change do not emerge from empirical data.
Hillebrand, Helmut; Donohue, Ian; Harpole, W Stanley; Hodapp, Dorothee; Kucera, Michal; Lewandowska, Aleksandra M; Merder, Julian; Montoya, Jose M; Freund, Jan A.
Afiliação
  • Hillebrand H; Plankton Ecology Lab, Institute for Chemistry and Biology of the Marine Environment, Carl von Ossietzky University Oldenburg, Oldenburg, Germany. helmut.hillebrand@uni-oldenburg.de.
  • Donohue I; Helmholtz-Institute for Functional Marine Biodiversity at the University of Oldenburg (HIFMB), Oldenburg, Germany. helmut.hillebrand@uni-oldenburg.de.
  • Harpole WS; Alfred-Wegener-Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany. helmut.hillebrand@uni-oldenburg.de.
  • Hodapp D; School of Natural Sciences, Department of Zoology, Trinity College Dublin, Dublin, Ireland.
  • Kucera M; Department of Physiological Diversity, Helmholtz Center for Environmental Research - UFZ, Leipzig, Germany.
  • Lewandowska AM; German Centre for Integrative Biodiversity Research, Leipzig, Germany.
  • Merder J; Martin Luther University Halle-Wittenberg, Halle, Germany.
  • Montoya JM; Helmholtz-Institute for Functional Marine Biodiversity at the University of Oldenburg (HIFMB), Oldenburg, Germany.
  • Freund JA; Alfred-Wegener-Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany.
Nat Ecol Evol ; 4(11): 1502-1509, 2020 11.
Article em En | MEDLINE | ID: mdl-32807945
ABSTRACT
To understand ecosystem responses to anthropogenic global change, a prevailing framework is the definition of threshold levels of pressure, above which response magnitudes and their variances increase disproportionately. However, we lack systematic quantitative evidence as to whether empirical data allow definition of such thresholds. Here, we summarize 36 meta-analyses measuring more than 4,600 global change impacts on natural communities. We find that threshold transgressions were rarely detectable, either within or across meta-analyses. Instead, ecological responses were characterized mostly by progressively increasing magnitude and variance when pressure increased. Sensitivity analyses with modelled data revealed that minor variances in the response are sufficient to preclude the detection of thresholds from data, even if they are present. The simulations reinforced our contention that global change biology needs to abandon the general expectation that system properties allow defining thresholds as a way to manage nature under global change. Rather, highly variable responses, even under weak pressures, suggest that 'safe-operating spaces' are unlikely to be quantifiable.
Assuntos

Texto completo: 1 Bases de dados: MEDLINE Assunto principal: Mudança Climática / Ecossistema Tipo de estudo: Prognostic_studies / Systematic_reviews Idioma: En Revista: Nat Ecol Evol Ano de publicação: 2020 Tipo de documento: Article País de afiliação: Alemanha

Texto completo: 1 Bases de dados: MEDLINE Assunto principal: Mudança Climática / Ecossistema Tipo de estudo: Prognostic_studies / Systematic_reviews Idioma: En Revista: Nat Ecol Evol Ano de publicação: 2020 Tipo de documento: Article País de afiliação: Alemanha