Your browser doesn't support javascript.
loading
Stable homotopy groups of spheres.
Isaksen, Daniel C; Wang, Guozhen; Xu, Zhouli.
Afiliação
  • Isaksen DC; Department of Mathematics, Wayne State University, Detroit, MI 48202; isaksen@wayne.edu.
  • Wang G; Shanghai Center for Mathematical Sciences, Fudan University, Shanghai 200433, China.
  • Xu Z; Department of Mathematics, University of California San Diego, La Jolla, CA 92093.
Proc Natl Acad Sci U S A ; 117(40): 24757-24763, 2020 10 06.
Article em En | MEDLINE | ID: mdl-32958681
We discuss the current state of knowledge of stable homotopy groups of spheres. We describe a computational method using motivic homotopy theory, viewed as a deformation of classical homotopy theory. This yields a streamlined computation of the first 61 stable homotopy groups and gives information about the stable homotopy groups in dimensions 62 through 90. As an application, we determine the groups of homotopy spheres that classify smooth structures on spheres through dimension 90, except for dimension 4. The method relies more heavily on machine computations than previous methods and is therefore less prone to error. The main mathematical tool is the Adams spectral sequence.
Palavras-chave

Texto completo: 1 Bases de dados: MEDLINE Idioma: En Revista: Proc Natl Acad Sci U S A Ano de publicação: 2020 Tipo de documento: Article

Texto completo: 1 Bases de dados: MEDLINE Idioma: En Revista: Proc Natl Acad Sci U S A Ano de publicação: 2020 Tipo de documento: Article