Your browser doesn't support javascript.
loading
Machine Learning Predicts Degree of Aromaticity from Structural Fingerprints.
Ponting, David J; van Deursen, Ruud; Ott, Martin A.
Afiliação
  • Ponting DJ; Lhasa Limited, Granary Wharf House, 2 Canal Wharf, Leeds LS11 5PS, United Kingdom.
  • van Deursen R; Lhasa Limited, Granary Wharf House, 2 Canal Wharf, Leeds LS11 5PS, United Kingdom.
  • Ott MA; Lhasa Limited, Granary Wharf House, 2 Canal Wharf, Leeds LS11 5PS, United Kingdom.
J Chem Inf Model ; 60(10): 4560-4568, 2020 10 26.
Article em En | MEDLINE | ID: mdl-32966076
Prediction of whether a compound is "aromatic" is at first glance a relatively simple task-does it obey Hückel's rule (planar cyclic π-system with 4n + 2 electrons) or not? However, aromaticity is far from a binary property, and there are distinct variations in the chemical and biological behavior of different systems which obey Hückel's rule and are thus classified as aromatic. To that end, the aromaticity of each molecule in a large public dataset was quantified by an extension of the work of Raczynska et al. Building on this data, a method is proposed for machine learning the degree of aromaticity of each aromatic ring in a molecule. Categories are derived from the numeric results, allowing the differentiation of structural patterns between them and thus a better representation of the underlying chemical and biological behavior in expert and (Q)SAR systems.
Assuntos

Texto completo: 1 Bases de dados: MEDLINE Assunto principal: Elétrons / Aprendizado de Máquina Tipo de estudo: Prognostic_studies / Risk_factors_studies Idioma: En Revista: J Chem Inf Model Assunto da revista: INFORMATICA MEDICA / QUIMICA Ano de publicação: 2020 Tipo de documento: Article País de afiliação: Reino Unido

Texto completo: 1 Bases de dados: MEDLINE Assunto principal: Elétrons / Aprendizado de Máquina Tipo de estudo: Prognostic_studies / Risk_factors_studies Idioma: En Revista: J Chem Inf Model Assunto da revista: INFORMATICA MEDICA / QUIMICA Ano de publicação: 2020 Tipo de documento: Article País de afiliação: Reino Unido