Your browser doesn't support javascript.
loading
Performance Evaluation of the uEXPLORER Total-Body PET/CT Scanner Based on NEMA NU 2-2018 with Additional Tests to Characterize PET Scanners with a Long Axial Field of View.
Spencer, Benjamin A; Berg, Eric; Schmall, Jeffrey P; Omidvari, Negar; Leung, Edwin K; Abdelhafez, Yasser G; Tang, Songsong; Deng, Zilin; Dong, Yun; Lv, Yang; Bao, Jun; Liu, Weiping; Li, Hongdi; Jones, Terry; Badawi, Ramsey D; Cherry, Simon R.
Afiliação
  • Spencer BA; Department of Biomedical Engineering, University of California-Davis, Davis, California benspencer@ucdavis.edu.
  • Berg E; Department of Radiology, University of California-Davis, Davis, California.
  • Schmall JP; Department of Biomedical Engineering, University of California-Davis, Davis, California.
  • Omidvari N; United Imaging Healthcare, Houston, Texas; and.
  • Leung EK; Department of Biomedical Engineering, University of California-Davis, Davis, California.
  • Abdelhafez YG; Department of Biomedical Engineering, University of California-Davis, Davis, California.
  • Tang S; Department of Radiology, University of California-Davis, Davis, California.
  • Deng Z; United Imaging Healthcare, Shanghai, China.
  • Dong Y; United Imaging Healthcare, Shanghai, China.
  • Lv Y; United Imaging Healthcare, Shanghai, China.
  • Bao J; United Imaging Healthcare, Shanghai, China.
  • Liu W; United Imaging Healthcare, Shanghai, China.
  • Li H; United Imaging Healthcare, Shanghai, China.
  • Jones T; United Imaging Healthcare, Houston, Texas; and.
  • Badawi RD; Department of Radiology, University of California-Davis, Davis, California.
  • Cherry SR; Department of Biomedical Engineering, University of California-Davis, Davis, California.
J Nucl Med ; 62(6): 861-870, 2021 06 01.
Article em En | MEDLINE | ID: mdl-33008932
The world's first total-body PET scanner with an axial field of view (AFOV) of 194 cm is now in clinical and research use at our institution. The uEXPLORER PET/CT system is the first commercially available total-body PET scanner. Here we present a detailed physical characterization of this scanner based on National Electrical Manufacturers Association (NEMA) NU 2-2018 along with a new set of measurements devised to appropriately characterize the total-body AFOV. Methods: Sensitivity, count-rate performance, time-of-flight resolution, spatial resolution, and image quality were evaluated following the NEMA NU 2-2018 protocol. Additional measurements of sensitivity and count-rate capabilities more representative of total-body imaging were performed using extended-geometry phantoms based on the world-average human height (∼165 cm). Lastly, image quality throughout the long AFOV was assessed with the NEMA image quality (IQ) phantom imaged at 5 axial positions and over a range of expected total-body PET imaging conditions (low dose, delayed imaging, short scan duration). Results: Our performance evaluation demonstrated that the scanner provides a very high sensitivity of 174 kcps/MBq, a count-rate performance with a peak noise-equivalent count rate of approximately 2 Mcps for total-body imaging, and good spatial resolution capabilities for human imaging (≤3.0 mm in full width at half maximum near the center of the AFOV). Excellent IQ, excellent contrast recovery, and low noise properties were illustrated across the AFOV in both NEMA IQ phantom evaluations and human imaging examples. Conclusion: In addition to standard NEMA NU 2-2018 characterization, a new set of measurements based on extending NEMA NU 2-2018 phantoms and experiments was devised to characterize the physical performance of the first total-body PET system. The rationale for these extended measurements was evident from differences in sensitivity, count-rate-activity relationships, and noise-equivalent count-rate limits imposed by differences in dead time and randoms fraction between the NEMA NU 2 70-cm phantoms and the more representative total-body imaging phantoms. Overall, the uEXPLORER PET system provides ultra-high sensitivity that supports excellent spatial resolution and IQ throughout the field of view in both phantom and human imaging.
Assuntos
Palavras-chave

Texto completo: 1 Bases de dados: MEDLINE Assunto principal: Imagem Corporal Total / Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada Tipo de estudo: Evaluation_studies / Guideline Limite: Humans Idioma: En Revista: J Nucl Med Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Bases de dados: MEDLINE Assunto principal: Imagem Corporal Total / Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada Tipo de estudo: Evaluation_studies / Guideline Limite: Humans Idioma: En Revista: J Nucl Med Ano de publicação: 2021 Tipo de documento: Article