Your browser doesn't support javascript.
loading
High-throughput continuous-flow microfluidic electroporation of mRNA into primary human T cells for applications in cellular therapy manufacturing.
Lissandrello, Charles A; Santos, Jose A; Hsi, Peter; Welch, Michaela; Mott, Vienna L; Kim, Ernest S; Chesin, Jordan; Haroutunian, Nerses J; Stoddard, Aaron G; Czarnecki, Andrew; Coppeta, Jonathan R; Freeman, Daniel K; Flusberg, Deborah A; Balestrini, Jenna L; Tandon, Vishal.
Afiliação
  • Lissandrello CA; The Charles Stark Draper Laboratory, Inc., Cambridge, MA, 02139, USA.
  • Santos JA; The Charles Stark Draper Laboratory, Inc., Cambridge, MA, 02139, USA.
  • Hsi P; The Charles Stark Draper Laboratory, Inc., Cambridge, MA, 02139, USA.
  • Welch M; The Charles Stark Draper Laboratory, Inc., Cambridge, MA, 02139, USA.
  • Mott VL; The Charles Stark Draper Laboratory, Inc., Cambridge, MA, 02139, USA.
  • Kim ES; The Charles Stark Draper Laboratory, Inc., Cambridge, MA, 02139, USA.
  • Chesin J; The Charles Stark Draper Laboratory, Inc., Cambridge, MA, 02139, USA.
  • Haroutunian NJ; The Charles Stark Draper Laboratory, Inc., Cambridge, MA, 02139, USA.
  • Stoddard AG; The Charles Stark Draper Laboratory, Inc., Cambridge, MA, 02139, USA.
  • Czarnecki A; The Charles Stark Draper Laboratory, Inc., Cambridge, MA, 02139, USA.
  • Coppeta JR; The Charles Stark Draper Laboratory, Inc., Cambridge, MA, 02139, USA.
  • Freeman DK; The Charles Stark Draper Laboratory, Inc., Cambridge, MA, 02139, USA.
  • Flusberg DA; The Charles Stark Draper Laboratory, Inc., Cambridge, MA, 02139, USA.
  • Balestrini JL; The Charles Stark Draper Laboratory, Inc., Cambridge, MA, 02139, USA.
  • Tandon V; The Charles Stark Draper Laboratory, Inc., Cambridge, MA, 02139, USA. vtandon@draper.com.
Sci Rep ; 10(1): 18045, 2020 10 22.
Article em En | MEDLINE | ID: mdl-33093518
ABSTRACT
Implementation of gene editing technologies such as CRISPR/Cas9 in the manufacture of novel cell-based therapeutics has the potential to enable highly-targeted, stable, and persistent genome modifications without the use of viral vectors. Electroporation has emerged as a preferred method for delivering gene-editing machinery to target cells, but a major challenge remaining is that most commercial electroporation machines are built for research and process development rather than for large-scale, automated cellular therapy manufacturing. Here we present a microfluidic continuous-flow electrotransfection device designed for precise, consistent, and high-throughput genetic modification of target cells in cellular therapy manufacturing applications. We optimized our device for delivery of mRNA into primary human T cells and demonstrated up to 95% transfection efficiency with minimum impact on cell viability and expansion potential. We additionally demonstrated processing of samples comprising up to 500 million T cells at a rate of 20 million cells/min. We anticipate that our device will help to streamline the production of autologous therapies requiring on the order of 10[Formula see text]-10[Formula see text] cells, and that it is well-suited to scale for production of trillions of cells to support emerging allogeneic therapies.
Assuntos

Texto completo: 1 Bases de dados: MEDLINE Assunto principal: RNA Mensageiro / Linfócitos T / Transfecção / Técnicas de Transferência de Genes / Eletroporação / Microfluídica / Terapia Baseada em Transplante de Células e Tecidos / Sistemas CRISPR-Cas / Edição de Genes Limite: Humans Idioma: En Revista: Sci Rep Ano de publicação: 2020 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Bases de dados: MEDLINE Assunto principal: RNA Mensageiro / Linfócitos T / Transfecção / Técnicas de Transferência de Genes / Eletroporação / Microfluídica / Terapia Baseada em Transplante de Células e Tecidos / Sistemas CRISPR-Cas / Edição de Genes Limite: Humans Idioma: En Revista: Sci Rep Ano de publicação: 2020 Tipo de documento: Article País de afiliação: Estados Unidos