Your browser doesn't support javascript.
loading
Magnetic Direct-Write Skyrmion Nanolithography.
Ognev, A V; Kolesnikov, A G; Kim, Yong Jin; Cha, In Ho; Sadovnikov, A V; Nikitov, S A; Soldatov, I V; Talapatra, A; Mohanty, J; Mruczkiewicz, M; Ge, Y; Kerber, N; Dittrich, F; Virnau, P; Kläui, M; Kim, Young Keun; Samardak, A S.
Afiliação
  • Ognev AV; School of Natural Sciences, Far Eastern Federal University, Vladivostok 690950, Russia.
  • Kolesnikov AG; School of Natural Sciences, Far Eastern Federal University, Vladivostok 690950, Russia.
  • Kim YJ; Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea.
  • Cha IH; Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea.
  • Sadovnikov AV; Laboratory "Metamaterials", Saratov State University, Saratov 410012, Russia.
  • Nikitov SA; Kotel'nikov Institute of Radioengineering and Electronics, Russian Academy of Sciences, Moscow 125009, Russia.
  • Soldatov IV; Laboratory "Metamaterials", Saratov State University, Saratov 410012, Russia.
  • Talapatra A; Kotel'nikov Institute of Radioengineering and Electronics, Russian Academy of Sciences, Moscow 125009, Russia.
  • Mohanty J; Leibniz Institute for Solid State and Material Research (IFW-Dresden), Dresden 01069, Germany.
  • Mruczkiewicz M; Institute of Natural Sciences and Mathematic, Ural Federal University, Yekaterinburg 620075, Russia.
  • Ge Y; Indian Institute of Technology, Hyderabad 502285, India.
  • Kerber N; Indian Institute of Technology, Hyderabad 502285, India.
  • Dittrich F; Institute of Electrical Engineering, SAS, Bratislava 841 04, Slovakia.
  • Virnau P; Centre for Advanced Materials Application (CEMEA), Slovak Academy of Sciences, Bratislava 845 11, Slovakia.
  • Kläui M; Institut für Physik, Johannes Gutenberg-Universität Mainz, Mainz 55128, Germany.
  • Kim YK; Institut für Physik, Johannes Gutenberg-Universität Mainz, Mainz 55128, Germany.
  • Samardak AS; Institut für Physik, Johannes Gutenberg-Universität Mainz, Mainz 55128, Germany.
ACS Nano ; 14(11): 14960-14970, 2020 Nov 24.
Article em En | MEDLINE | ID: mdl-33152236
ABSTRACT
Magnetic skyrmions are stable spin textures with quasi-particle behavior and attract significant interest in fundamental and applied physics. The metastability of magnetic skyrmions at zero magnetic field is particularly important to enable, for instance, a skyrmion racetrack memory. Here, the results of the nucleation of stable skyrmions and formation of ordered skyrmion lattices by magnetic force microscopy in (Pt/CoFeSiB/W)n multilayers, exploiting the additive effect of the interfacial Dzyaloshinskii-Moriya interaction, are presented. The appropriate conditions under which skyrmion lattices are confined with a dense two-dimensional liquid phase are identified. A crucial parameter to control the skyrmion lattice characteristics and the number of scans resulting in the complete formation of a skyrmion lattice is the distance between two adjacent scanning lines of a magnetic force microscopy probe. The creation of skyrmion patterns with complex geometry is demonstrated, and the physical mechanism of direct magnetic writing of skyrmions is comprehended by micromagnetic simulations. This study shows a potential of a direct-write (maskless) skyrmion (topological) nanolithography with sub-100 nm resolution, where each skyrmion acts as a pixel in the final topological image.
Palavras-chave

Texto completo: 1 Bases de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Revista: ACS Nano Ano de publicação: 2020 Tipo de documento: Article País de afiliação: Federação Russa

Texto completo: 1 Bases de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Revista: ACS Nano Ano de publicação: 2020 Tipo de documento: Article País de afiliação: Federação Russa