Poly(2-oxazoline) nanoparticle delivery enhances the therapeutic potential of vismodegib for medulloblastoma by improving CNS pharmacokinetics and reducing systemic toxicity.
Nanomedicine
; 32: 102345, 2021 02.
Article
em En
| MEDLINE
| ID: mdl-33259959
We report a nanoparticle formulation of the SHH-pathway inhibitor vismodegib that improves efficacy for medulloblastoma, while reducing toxicity. Limited blood-brain barrier (BBB) penetration and dose-limiting extitle/citraneural toxicities complicate systemic therapies for brain tumors. Vismodegib is FDA-approved for SHH-driven basal cell carcinoma, but implementation for medulloblastoma has been limited by inadequate efficacy and excessive bone toxicity. To address these issues through optimized drug delivery, we formulated vismodegib in polyoxazoline block copolymer micelles (POx-vismo). We then evaluated POx-vismo in transgenic mice that develop SHH-driven medulloblastomas with native vasculature and tumor microenvironment. POx-vismo improved CNS pharmacokinetics and reduced bone toxicity. Mechanistically, the nanoparticle carrier did not enter the CNS, and acted within the vascular compartment to improve drug delivery. Unlike conventional vismodegib, POx-vismo extended survival in medulloblastoma-bearing mice. Our results show the broad potential for non-targeted nanoparticle formulation to improve systemic brain tumor therapy, and specifically to improve vismodegib therapy for SHH-driven cancers.
Palavras-chave
Texto completo:
1
Bases de dados:
MEDLINE
Assunto principal:
Oxazóis
/
Piridinas
/
Sistema Nervoso Central
/
Neoplasias Cerebelares
/
Sistemas de Liberação de Medicamentos
/
Nanopartículas
/
Anilidas
/
Meduloblastoma
Limite:
Animals
Idioma:
En
Revista:
Nanomedicine
Assunto da revista:
BIOTECNOLOGIA
Ano de publicação:
2021
Tipo de documento:
Article
País de afiliação:
Estados Unidos