Your browser doesn't support javascript.
loading
Mycobacterium tuberculosis ESX-1-secreted substrate protein EspC promotes mycobacterial survival through endoplasmic reticulum stress-mediated apoptosis.
Guo, Qinglong; Bi, Jing; Wang, Honghai; Zhang, Xuelian.
Afiliação
  • Guo Q; State Key Laboratory of Genetic Engineering, School of Life Science, Fudan University, Shanghai, People's Republic of China.
  • Bi J; National Clinical Research Center for Infectious Disease (Tuberculosis), Shenzhen Third People's Hospital, South University of Science and Technology of China, Shenzhen, People's Republic of China.
  • Wang H; State Key Laboratory of Genetic Engineering, School of Life Science, Fudan University, Shanghai, People's Republic of China.
  • Zhang X; Key Laboratory of Medical Molecular Virology, Ministry of Education and Health, School of Basic Medical Sciences, Fudan University, Shanghai, People's Republic of China.
Emerg Microbes Infect ; 10(1): 19-36, 2021 Dec.
Article em En | MEDLINE | ID: mdl-33290182
EsxA, secreted by the ESAT-6 secretion system 1 (ESX-1) secretion system, is considered the major Mycobacterium tuberculosis (Mtb) virulence determinant. However, the roles of the individual ESX-1 substrates, such as EspC, remain unclear due to their interdependency for secretion with EsxA. Here, we validated that EspC triggered ER stress-mediated apoptosis in macrophages. The EspC-mediated ER stress was involved in pro-inflammatory cytokines generation, intracellular Ca2+ release, and reactive oxygen species accumulation. Mitochondrial transmembrane potential dissipation and mitochondrial outer membrane permeabilization occurred in EspC-treated macrophages, causing apoptosis. Furthermore, ER stress-mediated apoptosis was effectively induced in EspC-overexpressing Mycobacterium smegmatis-infected macrophages and mice. EspC overexpression caused a significant increase in bacterial survival in the macrophages, spleens, and lungs, and accelerated mouse death was observed. Moreover, the increased viability of bacteria in the macrophages was significantly reduced by pretreatment with the apoptosis inhibitor. Overall, our results revealed that EspC is an essential ESX-1 protein for Mtb-host interactions and EspC-induced ER stress-mediated apoptosis may be employed by Mtb to establish and spread infection. Given the critical roles of the ESX systems in Mtb pathogenesis and immunity, our findings offer new perspectives on the complex host-pathogen interactions and mechanisms underlying ESX-1-mediated pathogenesis.
Assuntos
Palavras-chave

Texto completo: 1 Bases de dados: MEDLINE Assunto principal: Proteínas de Bactérias / Macrófagos / Mycobacterium tuberculosis / Antígenos de Bactérias Limite: Animals Idioma: En Revista: Emerg Microbes Infect Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Bases de dados: MEDLINE Assunto principal: Proteínas de Bactérias / Macrófagos / Mycobacterium tuberculosis / Antígenos de Bactérias Limite: Animals Idioma: En Revista: Emerg Microbes Infect Ano de publicação: 2021 Tipo de documento: Article