Your browser doesn't support javascript.
loading
Friend of a Friend with Benefits ontology (FOAF+): extending a social network ontology for public health.
Amith, Muhammad; Fujimoto, Kayo; Mauldin, Rebecca; Tao, Cui.
Afiliação
  • Amith M; School of Biomedical Informatics, The University of Texas Health Science Center at Houston, 7000 Fannin St Suite 600, Houston, TX, 77030, USA.
  • Fujimoto K; School of Public Health, The University of Texas Health Science Center at Houston, 7000 Fannin Street, Suite 2514, Houston, TX, 77030, USA.
  • Mauldin R; The University of Texas at Arlington, 211 South Cooper Street, Box 19129, Arlington, TX, 76019, USA.
  • Tao C; School of Biomedical Informatics, The University of Texas Health Science Center at Houston, 7000 Fannin St Suite 600, Houston, TX, 77030, USA. cui.tao@uth.tmc.edu.
BMC Med Inform Decis Mak ; 20(Suppl 10): 269, 2020 12 15.
Article em En | MEDLINE | ID: mdl-33319708
BACKGROUND: Dyadic-based social networks analyses have been effective in a variety of behavioral- and health-related research areas. We introduce an ontology-driven approach towards social network analysis through encoding social data and inferring new information from the data. METHODS: The Friend of a Friend (FOAF) ontology is a lightweight social network ontology. We enriched FOAF by deriving social interaction data and relationships from social data to extend its domain scope. RESULTS: Our effort produced Friend of a Friend with Benefits (FOAF+) ontology that aims to support the spectrum of human interaction. A preliminary semiotic evaluation revealed a semantically rich and comprehensive knowledge base to represent complex social network relationships. With Semantic Web Rules Language, we demonstrated FOAF+ potential to infer social network ties between individual data. CONCLUSION: Using logical rules, we defined interpersonal dyadic social connections, which can create inferred linked dyadic social representations of individuals, represent complex behavioral information, help machines interpret some of the concepts and relationships involving human interaction, query network data, and contribute methods for analytical and disease surveillance.
Assuntos
Palavras-chave

Texto completo: 1 Bases de dados: MEDLINE Assunto principal: Saúde Pública / Amigos Limite: Humans Idioma: En Revista: BMC Med Inform Decis Mak Assunto da revista: INFORMATICA MEDICA Ano de publicação: 2020 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Bases de dados: MEDLINE Assunto principal: Saúde Pública / Amigos Limite: Humans Idioma: En Revista: BMC Med Inform Decis Mak Assunto da revista: INFORMATICA MEDICA Ano de publicação: 2020 Tipo de documento: Article País de afiliação: Estados Unidos