Your browser doesn't support javascript.
loading
Integrating comprehensive functional annotations to boost power and accuracy in gene-based association analysis.
Quick, Corbin; Wen, Xiaoquan; Abecasis, Gonçalo; Boehnke, Michael; Kang, Hyun Min.
Afiliação
  • Quick C; Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA.
  • Wen X; Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA, USA.
  • Abecasis G; Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA, USA.
  • Boehnke M; Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA.
  • Kang HM; Regeneron Genetics Center, Regeneron Pharmaceuticals, Tarrytown, NY, USA.
PLoS Genet ; 16(12): e1009060, 2020 12.
Article em En | MEDLINE | ID: mdl-33320851
Gene-based association tests aggregate genotypes across multiple variants for each gene, providing an interpretable gene-level analysis framework for genome-wide association studies (GWAS). Early gene-based test applications often focused on rare coding variants; a more recent wave of gene-based methods, e.g. TWAS, use eQTLs to interrogate regulatory associations. Regulatory variants are expected to be particularly valuable for gene-based analysis, since most GWAS associations to date are non-coding. However, identifying causal genes from regulatory associations remains challenging and contentious. Here, we present a statistical framework and computational tool to integrate heterogeneous annotations with GWAS summary statistics for gene-based analysis, applied with comprehensive coding and tissue-specific regulatory annotations. We compare power and accuracy identifying causal genes across single-annotation, omnibus, and annotation-agnostic gene-based tests in simulation studies and an analysis of 128 traits from the UK Biobank, and find that incorporating heterogeneous annotations in gene-based association analysis increases power and performance identifying causal genes.
Assuntos

Texto completo: 1 Bases de dados: MEDLINE Assunto principal: Estudo de Associação Genômica Ampla / Anotação de Sequência Molecular Tipo de estudo: Prognostic_studies / Risk_factors_studies Limite: Humans Idioma: En Revista: PLoS Genet Assunto da revista: GENETICA Ano de publicação: 2020 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Bases de dados: MEDLINE Assunto principal: Estudo de Associação Genômica Ampla / Anotação de Sequência Molecular Tipo de estudo: Prognostic_studies / Risk_factors_studies Limite: Humans Idioma: En Revista: PLoS Genet Assunto da revista: GENETICA Ano de publicação: 2020 Tipo de documento: Article País de afiliação: Estados Unidos