Your browser doesn't support javascript.
loading
Feasibility and Validity of Computed Tomography-Derived Fractional Flow Reserve in Patients With Severe Aortic Stenosis: The CAST-FFR Study.
Michail, Michael; Ihdayhid, Abdul-Rahman; Comella, Andrea; Thakur, Udit; Cameron, James D; McCormick, Liam M; Gooley, Robert P; Nicholls, Stephen J; Mathur, Anthony; Hughes, Alun D; Ko, Brian S; Brown, Adam J.
Afiliação
  • Michail M; Monash Cardiovascular Research Centre, Monash University and MonashHeart, Monash Health, Melbourne, Australia (M.M., A.-R.I., A.C., U.T., J.D.C., L.M.M., R.P.G., S.J.N., B.S.K., A.J.B.).
  • Ihdayhid AR; Institute of Cardiovascular Science, University College London, United Kingdom (M.M., A.M., A.D.H.).
  • Comella A; Monash Cardiovascular Research Centre, Monash University and MonashHeart, Monash Health, Melbourne, Australia (M.M., A.-R.I., A.C., U.T., J.D.C., L.M.M., R.P.G., S.J.N., B.S.K., A.J.B.).
  • Thakur U; Monash Cardiovascular Research Centre, Monash University and MonashHeart, Monash Health, Melbourne, Australia (M.M., A.-R.I., A.C., U.T., J.D.C., L.M.M., R.P.G., S.J.N., B.S.K., A.J.B.).
  • Cameron JD; Monash Cardiovascular Research Centre, Monash University and MonashHeart, Monash Health, Melbourne, Australia (M.M., A.-R.I., A.C., U.T., J.D.C., L.M.M., R.P.G., S.J.N., B.S.K., A.J.B.).
  • McCormick LM; Monash Cardiovascular Research Centre, Monash University and MonashHeart, Monash Health, Melbourne, Australia (M.M., A.-R.I., A.C., U.T., J.D.C., L.M.M., R.P.G., S.J.N., B.S.K., A.J.B.).
  • Gooley RP; Monash Cardiovascular Research Centre, Monash University and MonashHeart, Monash Health, Melbourne, Australia (M.M., A.-R.I., A.C., U.T., J.D.C., L.M.M., R.P.G., S.J.N., B.S.K., A.J.B.).
  • Nicholls SJ; Monash Cardiovascular Research Centre, Monash University and MonashHeart, Monash Health, Melbourne, Australia (M.M., A.-R.I., A.C., U.T., J.D.C., L.M.M., R.P.G., S.J.N., B.S.K., A.J.B.).
  • Mathur A; Monash Cardiovascular Research Centre, Monash University and MonashHeart, Monash Health, Melbourne, Australia (M.M., A.-R.I., A.C., U.T., J.D.C., L.M.M., R.P.G., S.J.N., B.S.K., A.J.B.).
  • Hughes AD; Institute of Cardiovascular Science, University College London, United Kingdom (M.M., A.M., A.D.H.).
  • Ko BS; Centre for Cardiovascular Medicine and Device Innovation, Queen Mary University of London, United Kingdom (A.M.).
  • Brown AJ; Institute of Cardiovascular Science, University College London, United Kingdom (M.M., A.M., A.D.H.).
Circ Cardiovasc Interv ; 14(1): e009586, 2021 01.
Article em En | MEDLINE | ID: mdl-33322917
ABSTRACT

BACKGROUND:

Coronary artery disease is common in patients with severe aortic stenosis. Computed tomography-derived fractional flow reserve (CT-FFR) is a clinically used modality for assessing coronary artery disease, however, its use has not been validated in patients with severe aortic stenosis. This study assesses the safety, feasibility, and validity of CT-FFR in patients with severe aortic stenosis.

METHODS:

Prospectively recruited patients underwent standard-protocol invasive FFR and coronary CT angiography (CTA). CTA images were analyzed by central core laboratory (HeartFlow, Inc) for independent evaluation of CT-FFR. CT-FFR data were compared with FFR (ischemia defined as FFR ≤0.80).

RESULTS:

Forty-two patients (68 vessels) underwent FFR and CTA; 39 patients (92.3%) and 60 vessels (88.2%) had interpretable CTA enabling CT-FFR computation. Mean age was 76.2±6.7 years (71.8% male). No patients incurred complications relating to premedication, CTA, or FFR protocol. Mean FFR and CT-FFR were 0.83±0.10 and 0.77±0.14, respectively. CT calcium score was 1373.3±1392.9 Agatston units. On per vessel analysis, there was positive correlation between FFR and CT-FFR (Pearson correlation coefficient, R=0.64, P<0.0001). Sensitivity, specificity, positive predictive value, and negative predictive values were 73.9%, 78.4%, 68.0%, and 82.9%, respectively, with 76.7% diagnostic accuracy. The area under the receiver-operating characteristic curve for CT-FFR was 0.83 (0.72-0.93, P<0.0001), which was higher than that of CTA and quantitative coronary angiography (P=0.01 and P<0.001, respectively). Bland-Altman plot showed mean bias between FFR and CT-FFR as 0.059±0.110. On per patient analysis, the sensitivity, specificity, positive predictive, and negative predictive values were 76.5%, 77.3%, 72.2%, and 81.0% with 76.9% diagnostic accuracy. The per patient area under the receiver-operating characteristic curve analysis was 0.81 (0.67-0.95, P<0.0001).

CONCLUSIONS:

CT-FFR is safe and feasible in patients with severe aortic stenosis. Our data suggests that the diagnostic accuracy of CT-FFR in this cohort potentially enables its use in clinical practice and provides the foundation for future research into the use of CT-FFR for coronary evaluation pre-aortic valve replacement.
Assuntos
Palavras-chave

Texto completo: 1 Bases de dados: MEDLINE Assunto principal: Estenose da Valva Aórtica / Doença da Artéria Coronariana / Estenose Coronária / Reserva Fracionada de Fluxo Miocárdico / Intervenção Coronária Percutânea Tipo de estudo: Guideline / Prognostic_studies Limite: Aged / Aged80 / Female / Humans / Male Idioma: En Revista: Circ Cardiovasc Interv Assunto da revista: ANGIOLOGIA / CARDIOLOGIA Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Bases de dados: MEDLINE Assunto principal: Estenose da Valva Aórtica / Doença da Artéria Coronariana / Estenose Coronária / Reserva Fracionada de Fluxo Miocárdico / Intervenção Coronária Percutânea Tipo de estudo: Guideline / Prognostic_studies Limite: Aged / Aged80 / Female / Humans / Male Idioma: En Revista: Circ Cardiovasc Interv Assunto da revista: ANGIOLOGIA / CARDIOLOGIA Ano de publicação: 2021 Tipo de documento: Article