Your browser doesn't support javascript.
loading
Vortex dynamics and transport phenomena in stenotic aortic models using Echo-PIV.
Brum, Javier; Bernal, Miguel; Barrere, Nicasio; Negreira, Carlos; Cabeza, Cecilia.
Afiliação
  • Brum J; Laboratorio de Acústica Ultrasonora, Instituto de Física, Facultad de Ciencias, Universidad de la República, Iguá 4225, 11400, Montevideo, Uruguay.
  • Bernal M; Grupo de Dinámica Cardiovascular, Universidad Pontificia Bolivariana, Medellín, Colombia.
  • Barrere N; Grupo de Física No Lineal, Instituto de Física, Facultad de Ciencias, Universidad de la República, Iguá 4225, 11400, Montevideo, Uruguay.
  • Negreira C; Laboratorio de Acústica Ultrasonora, Instituto de Física, Facultad de Ciencias, Universidad de la República, Iguá 4225, 11400, Montevideo, Uruguay.
  • Cabeza C; Grupo de Física No Lineal, Instituto de Física, Facultad de Ciencias, Universidad de la República, Iguá 4225, 11400, Montevideo, Uruguay.
Phys Med Biol ; 66(5)2021 02 26.
Article em En | MEDLINE | ID: mdl-33361564
ABSTRACT
Atherosclerosis is the most fatal cardiovascular disease. As disease progresses, stenoses grow inside the arteries blocking their lumen and altering blood flow. Analysing flow dynamics can provide a deeper insight on the stenosis evolution. In this work we combined Eulerian and Lagrangian descriptors to analyze blood flow dynamics and fluid transport in stenotic aortic models with morphology, mechanical and optical properties close to those of real arteries. To this end, vorticity, particle residence time (PRT), particle's final position (FP) and finite time Lyapunov's exponents (FTLE) were computed from the experimental fluid velocity fields acquired using ultrasonic particle imaging velocimetry (Echo-PIV). For the experiments, CT-images were used to create morphological realistic models of the descending aorta with 0%, 35% and 50% occlusion degree with same mechanical properties as real arteries. Each model was connected to a circuit with a pulsatile programmable pump which mimics physiological flow and pressure conditions. The pulsatile frequency was set to ≈0.9 Hz (55 bpm) and the upstream peak Reynolds number (Re) was changed from 1100 to 2000. Flow in the post-stenotic region was composed of two main structures a high velocity jet over the stenosis throat and a recirculation region behind the stenosis where vortex form and shed. We characterized vortex kinematics showing that vortex propagation velocity increases withRe. Moreover, from the FTLE field we identified Lagrangian coherent structures (i.e. material barriers) that dictate transport behind the stenosis. The size and strength of those barriers increased withReand the occlusion degree. Finally, from the PRT and FP maps, we showed that independently ofRe, the same amount of fluid remains on the stenosis over more than a pulsatile period.
Assuntos
Palavras-chave

Texto completo: 1 Bases de dados: MEDLINE Assunto principal: Estenose da Valva Aórtica / Reologia / Modelos Cardiovasculares Tipo de estudo: Diagnostic_studies Limite: Humans Idioma: En Revista: Phys Med Biol Ano de publicação: 2021 Tipo de documento: Article País de afiliação: Uruguai

Texto completo: 1 Bases de dados: MEDLINE Assunto principal: Estenose da Valva Aórtica / Reologia / Modelos Cardiovasculares Tipo de estudo: Diagnostic_studies Limite: Humans Idioma: En Revista: Phys Med Biol Ano de publicação: 2021 Tipo de documento: Article País de afiliação: Uruguai