Comparative influence of differentiation and proliferation on gene expression in human meibomian gland epithelial cells.
Exp Eye Res
; 205: 108452, 2021 04.
Article
em En
| MEDLINE
| ID: mdl-33493473
We recently discovered that by changing environmental signals, differentiated immortalized human meibomian gland epithelial cells (IHMGECs) de-differentiate into proliferating cells. We also discovered that following exposure to appropriate stimuli, these proliferative cells re-differentiate into differentiated IHMGECs. We hypothesize that this plasticity of differentiated and proliferative IHMGECs is paralleled by very significant alterations in cellular gene expression. To begin to test this hypothesis, we compared the gene expression patterns of IHMGECs during differentiation and proliferation. IHMGECs were cultured for four days in either differentiating or proliferating media. After four days of culture, cells were processed for the analysis of gene expression by using Illumina BeadChips and bioinformatic software. Our study identified significant differences in the expression of more than 9200 genes in differentiated and proliferative IHMGECs. Differentiation was associated with significant increases in the expression of specific genes (e.g. S100 calcium binding protein P; 7,194,386-fold upregulation) and numerous ontologies (e.g. 83 biological process [bp] ontologies with ≥100 genes were upregulated), such as those related to development, transport and lysosomes. Proliferation also led to a significant rise in specific gene expressions (e.g. cathelicidin antimicrobial peptide; 859,100-fold upregulation) and many ontologies (115 biological process [bp] ontologies with ≥100 genes were upregulated), with most of the highly significant ontologies related to cell cycle (z scores > 13.9). Our findings demonstrate that gene expression in differentiated and proliferative IHMGECs is extremely different. These results may have significant implications for the regeneration of HMGECs and the reversal of MG dropout in MG dysfunction.
Palavras-chave
Texto completo:
1
Bases de dados:
MEDLINE
Assunto principal:
Diferenciação Celular
/
Regulação da Expressão Gênica
/
Proliferação de Células
/
Células Epiteliais
/
Proteínas do Olho
/
Glândulas Tarsais
Tipo de estudo:
Prognostic_studies
Limite:
Humans
Idioma:
En
Revista:
Exp Eye Res
Ano de publicação:
2021
Tipo de documento:
Article