Your browser doesn't support javascript.
loading
The genome of Medicago polymorpha provides insights into its edibility and nutritional value as a vegetable and forage legume.
Cui, Jiawen; Lu, Zhaogeng; Wang, Tianyi; Chen, Gang; Mostafa, Salma; Ren, Hailong; Liu, Sian; Fu, Chunxiang; Wang, Li; Zhu, Yingfang; Lu, Jinkai; Chen, Xiang; Wei, Zhenwu; Jin, Biao.
Afiliação
  • Cui J; College of Horticulture and Plant Protection, Yangzhou University, 225009, Yangzhou, China.
  • Lu Z; College of Animal Science and Technology, Yangzhou University, 225009, Yangzhou, China.
  • Wang T; College of Horticulture and Plant Protection, Yangzhou University, 225009, Yangzhou, China.
  • Chen G; Novogene Bioinformatics Institute, 100083, Beijing, China.
  • Mostafa S; College of Bioscience and Biotechnology, Yangzhou University, 225009, Yangzhou, China.
  • Ren H; College of Horticulture and Plant Protection, Yangzhou University, 225009, Yangzhou, China.
  • Liu S; College of Animal Science and Technology, Yangzhou University, 225009, Yangzhou, China.
  • Fu C; College of Horticulture and Plant Protection, Yangzhou University, 225009, Yangzhou, China.
  • Wang L; Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 266101, Qingdao, China.
  • Zhu Y; College of Horticulture and Plant Protection, Yangzhou University, 225009, Yangzhou, China.
  • Lu J; State Key Laboratory of Crop Stress Adaptation and Improvement, Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, 475001, Kaifeng, China.
  • Chen X; College of Horticulture and Plant Protection, Yangzhou University, 225009, Yangzhou, China.
  • Wei Z; Novogene Bioinformatics Institute, 100083, Beijing, China.
  • Jin B; College of Animal Science and Technology, Yangzhou University, 225009, Yangzhou, China. zwwei@yzu.edu.cn.
Hortic Res ; 8(1): 47, 2021 Mar 01.
Article em En | MEDLINE | ID: mdl-33642569
Medicago polymorpha is a nutritious and palatable forage and vegetable plant that also fixes nitrogen. Here, we reveal the chromosome-scale genome sequence of M. polymorpha using an integrated approach including Illumina, PacBio and Hi-C technologies. We combined PacBio full-length RNA-seq, metabolomic analysis, structural anatomy analysis and related physiological indexes to elucidate the important agronomic traits of M. polymorpha for forage and vegetable usage. The assembled M. polymorpha genome consisted of 457.53 Mb with a long scaffold N50 of 57.72 Mb, and 92.92% (441.83 Mb) of the assembly was assigned to seven pseudochromosomes. Comparative genomic analysis revealed that expansion and contraction of the photosynthesis and lignin biosynthetic gene families, respectively, led to enhancement of nutritious compounds and reduced lignin biosynthesis in M. polymorpha. In addition, we found that several positively selected nitrogen metabolism-related genes were responsible for crude protein biosynthesis. Notably, the metabolomic results revealed that a large number of flavonoids, vitamins, alkaloids, and terpenoids were enriched in M. polymorpha. These results imply that the decreased lignin content but relatively high nutrient content of M. polymorpha enhance its edibility and nutritional value as a forage and vegetable. Our genomic data provide a genetic basis that will accelerate functional genomic and breeding research on M. polymorpha as well as other Medicago and legume plants.

Texto completo: 1 Bases de dados: MEDLINE Idioma: En Revista: Hortic Res Ano de publicação: 2021 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Bases de dados: MEDLINE Idioma: En Revista: Hortic Res Ano de publicação: 2021 Tipo de documento: Article País de afiliação: China