Your browser doesn't support javascript.
loading
LOTUS, an endogenous Nogo receptor antagonist, is involved in synapse and memory formation.
Nishida, Ryohei; Kawaguchi, Yuki; Matsubayashi, Junpei; Ishikawa, Rie; Kida, Satoshi; Takei, Kohtaro.
Afiliação
  • Nishida R; Molecular Medical Bioscience Laboratory, Yokohama City University Graduate School of Medical Life Science, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan.
  • Kawaguchi Y; Molecular Medical Bioscience Laboratory, Yokohama City University Graduate School of Medical Life Science, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan.
  • Matsubayashi J; Molecular Medical Bioscience Laboratory, Yokohama City University Graduate School of Medical Life Science, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan.
  • Ishikawa R; Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan.
  • Kida S; Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan.
  • Takei K; Molecular Medical Bioscience Laboratory, Yokohama City University Graduate School of Medical Life Science, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan. kohtaro@yokohama-cu.ac.jp.
Sci Rep ; 11(1): 5085, 2021 03 03.
Article em En | MEDLINE | ID: mdl-33658590
ABSTRACT
The Nogo signal is involved in impairment of memory formation. We previously reported the lateral olfactory tract usher substance (LOTUS) as an endogenous antagonist of the Nogo receptor 1 that mediates the inhibition of axon growth and synapse formation. Moreover, we found that LOTUS plays an essential role in neural circuit formation and nerve regeneration. However, the effects of LOTUS on synapse formation and memory function have not been elucidated. Here, we clearly showed the involvement of LOTUS in synapse formation and memory function. The cultured hippocampal neurons derived from lotus gene knockout (LOTUS-KO) mice exhibited a decrease in synaptic density compared with those from wild-type mice. We also found decrease of dendritic spine formation in the adult hippocampus of LOTUS-KO mice. Finally, we demonstrated that LOTUS deficiency impairs memory formation in the social recognition test and the Morris water maze test, indicating that LOTUS is involved in functions of social and spatial learning and memory. These findings suggest that LOTUS affects synapse formation and memory function.
Assuntos

Texto completo: 1 Bases de dados: MEDLINE Assunto principal: Bulbo Olfatório / Sinapses / Proteínas de Ligação ao Cálcio / Transdução de Sinais / Reconhecimento Psicológico / Receptor Nogo 1 Limite: Animals Idioma: En Revista: Sci Rep Ano de publicação: 2021 Tipo de documento: Article País de afiliação: Japão

Texto completo: 1 Bases de dados: MEDLINE Assunto principal: Bulbo Olfatório / Sinapses / Proteínas de Ligação ao Cálcio / Transdução de Sinais / Reconhecimento Psicológico / Receptor Nogo 1 Limite: Animals Idioma: En Revista: Sci Rep Ano de publicação: 2021 Tipo de documento: Article País de afiliação: Japão