Your browser doesn't support javascript.
loading
ABSTRACT
Coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in humans. Despite several emerging vaccines, there remains no verifiable therapeutic targeted specifically to the virus. Here we present a highly effective siRNA therapeutic against SARS-CoV-2 infection using a novel lipid nanoparticle delivery system. Multiple small-interfering RNAs (siRNAs) targeting highly conserved regions of the SARS-CoV-2 virus were screened and three candidate siRNAs emerged that effectively inhibit virus by greater than 90% either alone or in combination with one another. We simultaneously developed and screened two novel lipid nanoparticle formulations for the delivery of these candidate siRNA therapeutics to the lungs, an organ that incurs immense damage during SARS-CoV-2 infection. Encapsulation of siRNAs in these LNPs followed by in vivo injection demonstrated robust repression of virus in the lungs and a pronounced survival advantage to the treated mice. Our LNP-siRNA approaches are scalable and can be administered upon the first sign of SARS-CoV-2 infection in humans. We suggest that an siRNA-LNP therapeutic approach could prove highly useful in treating COVID-19 disease as an adjunctive therapy to current vaccine strategies.

Texto completo: 1 Bases de dados: MEDLINE Idioma: En Revista: BioRxiv Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Bases de dados: MEDLINE Idioma: En Revista: BioRxiv Ano de publicação: 2021 Tipo de documento: Article