Your browser doesn't support javascript.
loading
EPISPOT: An epigenome-driven approach for detecting and interpreting hotspots in molecular QTL studies.
Ruffieux, Hélène; Fairfax, Benjamin P; Nassiri, Isar; Vigorito, Elena; Wallace, Chris; Richardson, Sylvia; Bottolo, Leonardo.
Afiliação
  • Ruffieux H; MRC Biostatistics Unit, University of Cambridge, Cambridge CB2 0SR, UK. Electronic address: helene.ruffieux@mrc-bsu.cam.ac.uk.
  • Fairfax BP; Department of Oncology, MRC Weatherall Institute for Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK.
  • Nassiri I; Department of Oncology, MRC Weatherall Institute for Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK.
  • Vigorito E; MRC Biostatistics Unit, University of Cambridge, Cambridge CB2 0SR, UK.
  • Wallace C; MRC Biostatistics Unit, University of Cambridge, Cambridge CB2 0SR, UK; Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, University of Cambridge, Cambridge CB2 0AW, UK.
  • Richardson S; MRC Biostatistics Unit, University of Cambridge, Cambridge CB2 0SR, UK; The Alan Turing Institute, London NW1 2DB, UK.
  • Bottolo L; MRC Biostatistics Unit, University of Cambridge, Cambridge CB2 0SR, UK; The Alan Turing Institute, London NW1 2DB, UK; Department of Medical Genetics, University of Cambridge, Cambridge CB2 0QQ, UK.
Am J Hum Genet ; 108(6): 983-1000, 2021 06 03.
Article em En | MEDLINE | ID: mdl-33909991
ABSTRACT
We present EPISPOT, a fully joint framework which exploits large panels of epigenetic annotations as variant-level information to enhance molecular quantitative trait locus (QTL) mapping. Thanks to a purpose-built Bayesian inferential algorithm, EPISPOT accommodates functional information for both cis and trans actions, including QTL hotspot effects. It effectively couples simultaneous QTL analysis of thousands of genetic variants and molecular traits with hypothesis-free selection of biologically interpretable annotations which directly contribute to the QTL effects. This unified, epigenome-aided learning boosts statistical power and sheds light on the regulatory basis of the uncovered hits; EPISPOT therefore marks an essential step toward improving the challenging detection and functional interpretation of trans-acting genetic variants and hotspots. We illustrate the advantages of EPISPOT in simulations emulating real-data conditions and in a monocyte expression QTL study, which confirms known hotspots and finds other signals, as well as plausible mechanisms of action. In particular, by highlighting the role of monocyte DNase-I sensitivity sites from >150 epigenetic annotations, we clarify the mediation effects and cell-type specificity of major hotspots close to the lysozyme gene. Our approach forgoes the daunting and underpowered task of one-annotation-at-a-time enrichment analyses for prioritizing cis and trans QTL hits and is tailored to any transcriptomic, proteomic, or metabolomic QTL problem. By enabling principled epigenome-driven QTL mapping transcriptome-wide, EPISPOT helps progress toward a better functional understanding of genetic regulation.
Assuntos
Palavras-chave

Texto completo: 1 Bases de dados: MEDLINE Assunto principal: Fenótipo / Algoritmos / Simulação por Computador / Locos de Características Quantitativas / Epigenoma / Modelos Genéticos / Mutação Tipo de estudo: Prognostic_studies Limite: Humans Idioma: En Revista: Am J Hum Genet Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Bases de dados: MEDLINE Assunto principal: Fenótipo / Algoritmos / Simulação por Computador / Locos de Características Quantitativas / Epigenoma / Modelos Genéticos / Mutação Tipo de estudo: Prognostic_studies Limite: Humans Idioma: En Revista: Am J Hum Genet Ano de publicação: 2021 Tipo de documento: Article