Your browser doesn't support javascript.
loading
Somatic mutation landscapes at single-molecule resolution.
Abascal, Federico; Harvey, Luke M R; Mitchell, Emily; Lawson, Andrew R J; Lensing, Stefanie V; Ellis, Peter; Russell, Andrew J C; Alcantara, Raul E; Baez-Ortega, Adrian; Wang, Yichen; Kwa, Eugene Jing; Lee-Six, Henry; Cagan, Alex; Coorens, Tim H H; Chapman, Michael Spencer; Olafsson, Sigurgeir; Leonard, Steven; Jones, David; Machado, Heather E; Davies, Megan; Øbro, Nina F; Mahubani, Krishnaa T; Allinson, Kieren; Gerstung, Moritz; Saeb-Parsy, Kourosh; Kent, David G; Laurenti, Elisa; Stratton, Michael R; Rahbari, Raheleh; Campbell, Peter J; Osborne, Robert J; Martincorena, Iñigo.
Afiliação
  • Abascal F; Wellcome Sanger Institute, Hinxton, UK.
  • Harvey LMR; Wellcome Sanger Institute, Hinxton, UK.
  • Mitchell E; Wellcome Sanger Institute, Hinxton, UK.
  • Lawson ARJ; Wellcome-MRC Cambridge Stem Cell Institute, Cambridge Biomedical Campus, Cambridge, UK.
  • Lensing SV; Wellcome Sanger Institute, Hinxton, UK.
  • Ellis P; Wellcome Sanger Institute, Hinxton, UK.
  • Russell AJC; Wellcome Sanger Institute, Hinxton, UK.
  • Alcantara RE; Inivata, Babraham Research Campus, Cambridge, UK.
  • Baez-Ortega A; Wellcome Sanger Institute, Hinxton, UK.
  • Wang Y; Wellcome Sanger Institute, Hinxton, UK.
  • Kwa EJ; Wellcome Sanger Institute, Hinxton, UK.
  • Lee-Six H; Wellcome Sanger Institute, Hinxton, UK.
  • Cagan A; Wellcome Sanger Institute, Hinxton, UK.
  • Coorens THH; Wellcome Sanger Institute, Hinxton, UK.
  • Chapman MS; Wellcome Sanger Institute, Hinxton, UK.
  • Olafsson S; Wellcome Sanger Institute, Hinxton, UK.
  • Leonard S; Wellcome Sanger Institute, Hinxton, UK.
  • Jones D; Wellcome Sanger Institute, Hinxton, UK.
  • Machado HE; Wellcome Sanger Institute, Hinxton, UK.
  • Davies M; Wellcome Sanger Institute, Hinxton, UK.
  • Øbro NF; Wellcome Sanger Institute, Hinxton, UK.
  • Mahubani KT; Wellcome-MRC Cambridge Stem Cell Institute, Cambridge Biomedical Campus, Cambridge, UK.
  • Allinson K; Wellcome-MRC Cambridge Stem Cell Institute, Cambridge Biomedical Campus, Cambridge, UK.
  • Gerstung M; Department of Haematology, University of Cambridge, Cambridge, UK.
  • Saeb-Parsy K; Department of Haematology, University of Cambridge, Cambridge, UK.
  • Kent DG; Department of Surgery, University of Cambridge, Cambridge, UK.
  • Laurenti E; NIHR Cambridge Biomedical Research Centre, Cambridge Biomedical Campus, Cambridge, UK.
  • Stratton MR; Cambridge Brain Bank, Division of the Human Research Tissue Bank, Addenbrooke's Hospital, Cambridge, UK.
  • Rahbari R; European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Hinxton, UK.
  • Campbell PJ; Department of Surgery, University of Cambridge, Cambridge, UK.
  • Osborne RJ; NIHR Cambridge Biomedical Research Centre, Cambridge Biomedical Campus, Cambridge, UK.
  • Martincorena I; Wellcome-MRC Cambridge Stem Cell Institute, Cambridge Biomedical Campus, Cambridge, UK.
Nature ; 593(7859): 405-410, 2021 05.
Article em En | MEDLINE | ID: mdl-33911282
ABSTRACT
Somatic mutations drive the development of cancer and may contribute to ageing and other diseases1,2. Despite their importance, the difficulty of detecting mutations that are only present in single cells or small clones has limited our knowledge of somatic mutagenesis to a minority of tissues. Here, to overcome these limitations, we developed nanorate sequencing (NanoSeq), a duplex sequencing protocol with error rates of less than five errors per billion base pairs in single DNA molecules from cell populations. This rate is two orders of magnitude lower than typical somatic mutation loads, enabling the study of somatic mutations in any tissue independently of clonality. We used this single-molecule sensitivity to study somatic mutations in non-dividing cells across several tissues, comparing stem cells to differentiated cells and studying mutagenesis in the absence of cell division. Differentiated cells in blood and colon displayed remarkably similar mutation loads and signatures to their corresponding stem cells, despite mature blood cells having undergone considerably more divisions. We then characterized the mutational landscape of post-mitotic neurons and polyclonal smooth muscle, confirming that neurons accumulate somatic mutations at a constant rate throughout life without cell division, with similar rates to mitotically active tissues. Together, our results suggest that mutational processes that are independent of cell division are important contributors to somatic mutagenesis. We anticipate that the ability to reliably detect mutations in single DNA molecules could transform our understanding of somatic mutagenesis and enable non-invasive studies on large-scale cohorts.
Assuntos

Texto completo: 1 Bases de dados: MEDLINE Assunto principal: Células-Tronco / Células Sanguíneas / Análise Mutacional de DNA / Diferenciação Celular / Imagem Individual de Molécula / Músculo Liso / Mutação / Neurônios Tipo de estudo: Etiology_studies / Incidence_studies / Observational_studies / Risk_factors_studies Limite: Humans / Male / Middle aged Idioma: En Revista: Nature Ano de publicação: 2021 Tipo de documento: Article País de afiliação: Reino Unido

Texto completo: 1 Bases de dados: MEDLINE Assunto principal: Células-Tronco / Células Sanguíneas / Análise Mutacional de DNA / Diferenciação Celular / Imagem Individual de Molécula / Músculo Liso / Mutação / Neurônios Tipo de estudo: Etiology_studies / Incidence_studies / Observational_studies / Risk_factors_studies Limite: Humans / Male / Middle aged Idioma: En Revista: Nature Ano de publicação: 2021 Tipo de documento: Article País de afiliação: Reino Unido