Your browser doesn't support javascript.
loading
A role for IL-33-activated ILC2s in eosinophilic vasculitis.
Kotas, Maya E; Dion, Jérémie; Van Dyken, Steven; Ricardo-Gonzalez, Roberto R; Danel, Claire J; Taillé, Camille; Mouthon, Luc; Locksley, Richard M; Terrier, Benjamin.
Afiliação
  • Kotas ME; Division of Pulmonary, Critical Care, Allergy & Sleep Medicine, University of California, San Francisco, California, USA.
  • Dion J; Department of Internal Medicine, National Referral Center for Rare and Systemic Autoimmune Diseases, Cochin Hospital, AP-HP, Paris, France.
  • Van Dyken S; Department of Pathology & Immunology, Washington University School of Medicine in St. Louis, Missouri, USA.
  • Ricardo-Gonzalez RR; Department of Dermatology, University of California, San Francisco, California, USA.
  • Danel CJ; Department of Pathology and.
  • Taillé C; Department of Pulmonology, Bichat Hospital, AP-HP, Paris, France.
  • Mouthon L; Department of Internal Medicine, National Referral Center for Rare and Systemic Autoimmune Diseases, Cochin Hospital, AP-HP, Paris, France.
  • Locksley RM; Howard Hughes Medical Institute, University of California, San Francisco, California, USA.
  • Terrier B; Department of Medicine, University of California, San Francisco, California, USA.
JCI Insight ; 6(12)2021 06 22.
Article em En | MEDLINE | ID: mdl-33974563
Eosinophilic granulomatosis with polyangiitis (EGPA) is a rare but serious disease with poorly understood mechanisms. Here, we report that patients with EGPA have elevated levels of TSLP, IL-25, and soluble ST2, which are well-characterized cytokine "alarmins" that activate or modulate type 2 innate lymphoid cells (ILC2s). Patients with active EGPA have a concurrent reduction in circulating ILC2s, suggesting a role for ILC2s in the pathogenesis of this disease. To explore the mechanism of these findings in patients, we established a model of EGPA in which active vasculitis and pulmonary hemorrhage were induced by IL-33 administration in predisposed, hypereosinophilic mice. In this model, induction of pulmonary hemorrhage and vasculitis was dependent on ILC2s and signaling through IL4Rα. In the absence of IL4Rα or STAT6, IL-33-treated mice had less vascular leak and pulmonary edema, less endothelial activation, and reduced eotaxin production, cumulatively leading to a reduction of pathologic eosinophil migration into the lung parenchyma. These results offer a mouse model for use in future mechanistic studies of EGPA, and they suggest that IL-33, ILC2s, and IL4Rα signaling may be potential targets for further study and therapeutic targeting in patients with EGPA.
Assuntos
Palavras-chave

Texto completo: 1 Bases de dados: MEDLINE Assunto principal: Linfócitos / Síndrome de Churg-Strauss / Interleucina-33 Tipo de estudo: Prognostic_studies Limite: Animals / Humans Idioma: En Revista: JCI Insight Ano de publicação: 2021 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Bases de dados: MEDLINE Assunto principal: Linfócitos / Síndrome de Churg-Strauss / Interleucina-33 Tipo de estudo: Prognostic_studies Limite: Animals / Humans Idioma: En Revista: JCI Insight Ano de publicação: 2021 Tipo de documento: Article País de afiliação: Estados Unidos