Your browser doesn't support javascript.
loading
Alginate hydrogels functionalized with ß-cyclodextrin as a local paclitaxel delivery system.
Omtvedt, Line Aanerud; Kristiansen, Kåre Andre; Strand, Wenche Iren; Aachmann, Finn Lillelund; Strand, Berit Løkensgard; Zaytseva-Zotova, Daria Sergeevna.
Afiliação
  • Omtvedt LA; NOBIPOL, Department of Biotechnology and Food Science, NTNU Norwegian University of Science and Technology, Trondheim, Norway.
  • Kristiansen KA; NOBIPOL, Department of Biotechnology and Food Science, NTNU Norwegian University of Science and Technology, Trondheim, Norway.
  • Strand WI; NOBIPOL, Department of Biotechnology and Food Science, NTNU Norwegian University of Science and Technology, Trondheim, Norway.
  • Aachmann FL; NOBIPOL, Department of Biotechnology and Food Science, NTNU Norwegian University of Science and Technology, Trondheim, Norway.
  • Strand BL; NOBIPOL, Department of Biotechnology and Food Science, NTNU Norwegian University of Science and Technology, Trondheim, Norway.
  • Zaytseva-Zotova DS; NOBIPOL, Department of Biotechnology and Food Science, NTNU Norwegian University of Science and Technology, Trondheim, Norway.
J Biomed Mater Res A ; 109(12): 2625-2639, 2021 12.
Article em En | MEDLINE | ID: mdl-34190416
ABSTRACT
Modification of drug delivery materials with beta-cyclodextrins (ß-CyD) is known to increase solubility of poorly water-soluble drugs, protect drugs from degradation and sustain release. In this study, we developed a hydrogel drug delivery system for local paclitaxel delivery using the natural polysaccharide alginate functionalized with ß-CyD-moieties. Paclitaxel was chosen due to its ability to form inclusion complexes with cyclodextrins. The rheological and mechanical properties of the prepared hydrogels were characterized, as well as in vitro release of the paclitaxel and in vitro activity on PC-3 prostate cancer cells. Introduction of ß-CyD-moieties into the hydrogel reduces the mechanical properties of the gels compared to nonmodified gels. However, gelation kinetics were not markedly different. Furthermore, the ß-CyD-modified alginate helped to reduce undesired crystallization of the paclitaxel in the gel and facilitated paclitaxel diffusion out of the gel network. Remarkably, the ß-CyD grafted alginate showed increased capacity to complex paclitaxel compared to free HPß-CyD. Release of both paclitaxel and degradation products were measured from the gels and were shown to have cytotoxic effects on the PC-3 cells. The results indicate that functionalized alginate with ß-CyDs has potential as a material for drug delivery systems.
Assuntos
Palavras-chave

Texto completo: 1 Bases de dados: MEDLINE Assunto principal: Paclitaxel / Hidrogéis / Beta-Ciclodextrinas / Alginatos / Antineoplásicos Fitogênicos Limite: Humans / Male Idioma: En Revista: J Biomed Mater Res A Assunto da revista: ENGENHARIA BIOMEDICA Ano de publicação: 2021 Tipo de documento: Article País de afiliação: Noruega

Texto completo: 1 Bases de dados: MEDLINE Assunto principal: Paclitaxel / Hidrogéis / Beta-Ciclodextrinas / Alginatos / Antineoplásicos Fitogênicos Limite: Humans / Male Idioma: En Revista: J Biomed Mater Res A Assunto da revista: ENGENHARIA BIOMEDICA Ano de publicação: 2021 Tipo de documento: Article País de afiliação: Noruega