Your browser doesn't support javascript.
loading
On the space-time statistics of motion pictures.
J Opt Soc Am A Opt Image Sci Vis ; 38(7): 908-923, 2021 Jul 01.
Article em En | MEDLINE | ID: mdl-34263746
It is well known that natural images possess statistical regularities that can be captured by bandpass decomposition and divisive normalization processes that approximate early neural processing in the human visual system. We expand on these studies and present new findings on the properties of space-time natural statistics that are inherent in motion pictures. Our model relies on the concept of temporal bandpass (e.g., lag) filtering in lateral geniculate nucleus (LGN) and area V1, which is similar to smoothed frame differencing of video frames. Specifically, we model the statistics of the differences between adjacent or neighboring video frames that have been slightly spatially displaced relative to one another. We find that when these space-time differences are further subjected to locally pooled divisive normalization, statistical regularities (or lack thereof) arise that depend on the local motion trajectory. We find that bandpass and divisively normalized frame differences that are displaced along the motion direction exhibit stronger statistical regularities than for other displacements. Conversely, the direction-dependent regularities of displaced frame differences can be used to estimate the image motion (optical flow) by finding the space-time displacement paths that best preserve statistical regularity.
Assuntos

Texto completo: 1 Bases de dados: MEDLINE Assunto principal: Percepção Visual / Córtex Visual Primário Tipo de estudo: Prognostic_studies Limite: Humans Idioma: En Revista: J Opt Soc Am A Opt Image Sci Vis Assunto da revista: OFTALMOLOGIA Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Bases de dados: MEDLINE Assunto principal: Percepção Visual / Córtex Visual Primário Tipo de estudo: Prognostic_studies Limite: Humans Idioma: En Revista: J Opt Soc Am A Opt Image Sci Vis Assunto da revista: OFTALMOLOGIA Ano de publicação: 2021 Tipo de documento: Article