Your browser doesn't support javascript.
loading
Multichannel left-subtract-right feature vector piston error detection method based on a convolutional neural network.
Opt Express ; 29(14): 21320-21335, 2021 Jul 05.
Article em En | MEDLINE | ID: mdl-34265922
To realize the large-scale and high-precision co-phasing adjustment of synthetic-aperture telescopes, we propose a multichannel left-subtract-right feature vector piston error detection method based on a convolutional neural network, which inherits the high precision and strong noise resistance of the DFA-LSR method while achieving a detection range of (-139λ, 139λ) (λ = 720 nm). In addition, a scheme to build large training datasets was proposed to solve the difficulty in collecting datasets using traditional neural network methods. Finally, simulations verified that this method can guarantee at least 94.96% accuracy with large samples, obtaining a root mean square error of 10.2 nm when the signal-to-noise ratio is 15.

Texto completo: 1 Bases de dados: MEDLINE Tipo de estudo: Diagnostic_studies Idioma: En Revista: Opt Express Assunto da revista: OFTALMOLOGIA Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Bases de dados: MEDLINE Tipo de estudo: Diagnostic_studies Idioma: En Revista: Opt Express Assunto da revista: OFTALMOLOGIA Ano de publicação: 2021 Tipo de documento: Article