Your browser doesn't support javascript.
loading
Heralded high-fidelity quantum hyper-CNOT gates assisted by charged quantum dots inside single-sided optical microcavities.
Opt Express ; 29(13): 20045-20062, 2021 Jun 21.
Article em En | MEDLINE | ID: mdl-34266103
Photonic hyper-parallel quantum information processing (QIP) can simplify the quantum circuit and improve the information-processing speed, as well as reduce the quantum resource consumption and suppress the photonic dissipation noise. Here, utilizing the singly charged semiconductor quantum dot (QD) inside single-sided optical microcavity as the potentially experimental platform, we propose five schemes for heralded four-qubit hyper-controlled-not (hyper-CNOT) gates, covering all cases of four-qubit hyper-CNOT gates operated on both the polarization and spatial-mode degrees of freedom (DoFs) of a two-photon system. The novel heralding mechanism improves the fidelity of each hyper-CNOT gate to unity in principle without the strict restriction of strong coupling. The adaptability and scalability of the schemes make the hyper-CNOT gates more accessible under current experimental technologies. These heralded high-fidelity photonic hyper-CNOT gates can therefore have immense utilization potentials in high-capacity quantum communication and fast quantum computing, which are of far-reaching significance for QIP.

Texto completo: 1 Bases de dados: MEDLINE Idioma: En Revista: Opt Express Assunto da revista: OFTALMOLOGIA Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Bases de dados: MEDLINE Idioma: En Revista: Opt Express Assunto da revista: OFTALMOLOGIA Ano de publicação: 2021 Tipo de documento: Article