Your browser doesn't support javascript.
loading
Autoencoder based local T cell repertoire density can be used to classify samples and T cell receptors.
Dvorkin, Shirit; Levi, Reut; Louzoun, Yoram.
Afiliação
  • Dvorkin S; Department of Mathematics, Bar Ilan University, Ramat Gan, Israel.
  • Levi R; Department of Mathematics, Bar Ilan University, Ramat Gan, Israel.
  • Louzoun Y; Department of Mathematics, Bar Ilan University, Ramat Gan, Israel.
PLoS Comput Biol ; 17(7): e1009225, 2021 07.
Article em En | MEDLINE | ID: mdl-34310600
Recent advances in T cell repertoire (TCR) sequencing allow for the characterization of repertoire properties, as well as the frequency and sharing of specific TCR. However, there is no efficient measure for the local density of a given TCR. TCRs are often described either through their Complementary Determining region 3 (CDR3) sequences, or theirV/J usage, or their clone size. We here show that the local repertoire density can be estimated using a combined representation of these components through distance conserving autoencoders and Kernel Density Estimates (KDE). We present ELATE-an Encoder-based LocAl Tcr dEnsity and show that the resulting density of a sample can be used as a novel measure to study repertoire properties. The cross-density between two samples can be used as a similarity matrix to fully characterize samples from the same host. Finally, the same projection in combination with machine learning algorithms can be used to predict TCR-peptide binding through the local density of known TCRs binding a specific target.
Assuntos

Texto completo: 1 Bases de dados: MEDLINE Assunto principal: Software / Receptores de Antígenos de Linfócitos T Tipo de estudo: Prognostic_studies Limite: Humans Idioma: En Revista: PLoS Comput Biol Assunto da revista: BIOLOGIA / INFORMATICA MEDICA Ano de publicação: 2021 Tipo de documento: Article País de afiliação: Israel

Texto completo: 1 Bases de dados: MEDLINE Assunto principal: Software / Receptores de Antígenos de Linfócitos T Tipo de estudo: Prognostic_studies Limite: Humans Idioma: En Revista: PLoS Comput Biol Assunto da revista: BIOLOGIA / INFORMATICA MEDICA Ano de publicação: 2021 Tipo de documento: Article País de afiliação: Israel