Redundant roles of four ZIP family members in zinc homeostasis and seed development in Arabidopsis thaliana.
Plant J
; 108(4): 1162-1173, 2021 11.
Article
em En
| MEDLINE
| ID: mdl-34559918
Zinc (Zn) is essential for normal plant growth and development. The Zn-regulated transporter, iron-regulated transporter (IRT)-like protein (ZIP) family members are involved in Zn transport and cellular Zn homeostasis throughout the domains of life. In this study, we have characterized four ZIP transporters from Arabidopsis thaliana (IRT3, ZIP4, ZIP6, and ZIP9) to better understand their functional roles. The four ZIP proteins can restore the growth defect of a yeast Zn uptake mutant and are upregulated under Zn deficiency. Single and double mutants show no phenotypes under Zn-sufficient or Zn-limited growth conditions. In contrast, triple and quadruple mutants show impaired growth irrespective of external Zn supply due to reduced Zn translocation from root to shoot. All four ZIP genes are highly expressed during seed development, and siliques from all single and higher-order mutants exhibited an increased number of abnormal seeds and decreased Zn levels in mature seeds relative to wild type. The seed phenotypes could be reversed by supplementing the soil with Zn. Our data demonstrate that IRT3, ZIP4, ZIP6, and ZIP9 function redundantly in maintaining Zn homeostasis and seed development in A. thaliana.
Palavras-chave
Texto completo:
1
Bases de dados:
MEDLINE
Assunto principal:
Zinco
/
Arabidopsis
/
Proteínas de Arabidopsis
Idioma:
En
Revista:
Plant J
Assunto da revista:
BIOLOGIA MOLECULAR
/
BOTANICA
Ano de publicação:
2021
Tipo de documento:
Article
País de afiliação:
Estados Unidos