Your browser doesn't support javascript.
loading
Neonatal encephalopathy plasma metabolites are associated with neurodevelopmental outcomes.
Friedes, Barbara D; Molloy, Eleanor; Strickland, Tammy; Zhu, Jie; Slevin, Marie; Donoghue, Veronica; Sweetman, Deirdre; Kelly, Lynne; O'Dea, Mary; Roux, Aurelie; Harlan, Robert; Ellis, Gregory; Manlhiot, Cedric; Graham, David; Northington, Frances; Everett, Allen D.
Afiliação
  • Friedes BD; Johns Hopkins University School of Medicine, Baltimore, MD, USA.
  • Molloy E; Department of Paediatrics, Trinity Research in Childhood Centre and Trinity Translational Medicine Institute, Trinity College Dublin, University of Dublin, Dublin, Ireland.
  • Strickland T; Children's Health Ireland (CHI) at Crumlin & Tallaght, Coombe Women and Infants University Hospital, Dublin, Ireland.
  • Zhu J; Department of Paediatrics, Trinity Research in Childhood Centre and Trinity Translational Medicine Institute, Trinity College Dublin, University of Dublin, Dublin, Ireland.
  • Slevin M; Johns Hopkins University School of Medicine, Baltimore, MD, USA.
  • Donoghue V; Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
  • Sweetman D; National Maternity Hospital, Dublin, Ireland.
  • Kelly L; National Maternity Hospital, Dublin, Ireland.
  • O'Dea M; National Maternity Hospital, Dublin, Ireland.
  • Roux A; Department of Paediatrics, Trinity Research in Childhood Centre and Trinity Translational Medicine Institute, Trinity College Dublin, University of Dublin, Dublin, Ireland.
  • Harlan R; Department of Paediatrics, Trinity Research in Childhood Centre and Trinity Translational Medicine Institute, Trinity College Dublin, University of Dublin, Dublin, Ireland.
  • Ellis G; Johns Hopkins All Children's Hospital, St. Petersburg, FL, USA.
  • Manlhiot C; Johns Hopkins All Children's Hospital, St. Petersburg, FL, USA.
  • Graham D; Johns Hopkins All Children's Hospital, St. Petersburg, FL, USA.
  • Northington F; Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
  • Everett AD; Johns Hopkins University School of Medicine, Baltimore, MD, USA.
Pediatr Res ; 92(2): 466-473, 2022 08.
Article em En | MEDLINE | ID: mdl-34621028
BACKGROUND: To investigate mechanisms of injury and recovery in neonatal encephalopathy (NE), we performed targeted metabolomic analysis of plasma using liquid chromatography with tandem mass spectrometry (LC/MS/MS) from healthy term neonates or neonates with NE. METHODS: Plasma samples from the NE (n = 45, day of life 0-1) or healthy neonatal (n = 30, ≥36 weeks gestation) cohorts had LC/MS/MS metabolomic profiling with a 193-plex targeted metabolite assay covering >366 metabolic pathways. Metabolite levels were compared to 2-year neurodevelopmental outcomes measured by the Bayley Scales of Infant and Toddler Development III (Bayley-III). RESULTS: Out of 193 metabolites, 57 met the pre-defined quality control criteria for analysis. Significant (after false discovery rate correction) KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways included aminoacyl-tRNA biosynthesis, arginine biosynthesis, and metabolism of multiple amino acids. Significant disease pathways included seizures. In regression models, histidine and C6 sugar amine were significantly associated with cognitive, motor, and language and betaine with cognitive and motor Bayley-III composite scores. The addition of histidine, C6 sugar amine, and betaine to a Sarnat score-based clinical regression model significantly improved model performance (Akaike information criterion and adjusted r2) for Bayley-III cognitive, motor, and language scores. CONCLUSIONS: Plasma metabolites may help to predict neurological outcomes in neonatal brain injury and enhance current clinical predictors. IMPACT: Plasma metabolites may help to predict neurological outcomes in NE and supplement current clinical predictors. Current metabolomics research is limited in terms of clinical application and association with long-term outcomes. Our study presents novel associations of plasma metabolites from the first 24 h of life and 2-year neurodevelopmental outcomes for infants with NE. Our metabolomics discovery provides insight into possible disease mechanisms and methods to rescue and/or supplement metabolic pathways involved in NE. Our metabolomics discovery of metabolic pathway supplementations and/or rescue mechanisms may serve as adjunctive therapies for NE.
Assuntos

Texto completo: 1 Bases de dados: MEDLINE Assunto principal: Lesões Encefálicas / Doenças do Recém-Nascido Tipo de estudo: Prognostic_studies / Risk_factors_studies Limite: Humans / Infant / Newborn Idioma: En Revista: Pediatr Res Ano de publicação: 2022 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Bases de dados: MEDLINE Assunto principal: Lesões Encefálicas / Doenças do Recém-Nascido Tipo de estudo: Prognostic_studies / Risk_factors_studies Limite: Humans / Infant / Newborn Idioma: En Revista: Pediatr Res Ano de publicação: 2022 Tipo de documento: Article País de afiliação: Estados Unidos