Your browser doesn't support javascript.
loading
Deep Modeling of Regulating Effects of Small Molecules on Longevity-Associated Genes.
You, Jiaying; Hsing, Michael; Cherkasov, Artem.
Afiliação
  • You J; Vancouver Prostate Centre, Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC V6H 3Z6, Canada.
  • Hsing M; Vancouver Prostate Centre, Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC V6H 3Z6, Canada.
  • Cherkasov A; Vancouver Prostate Centre, Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC V6H 3Z6, Canada.
Pharmaceuticals (Basel) ; 14(10)2021 Sep 22.
Article em En | MEDLINE | ID: mdl-34681172
ABSTRACT
Aging is considered an inevitable process that causes deleterious effects in the functioning and appearance of cells, tissues, and organs. Recent emergence of large-scale gene expression datasets and significant advances in machine learning techniques have enabled drug repurposing efforts in promoting longevity. In this work, we further developed our previous approach-DeepCOP, a quantitative chemogenomic model that predicts gene regulating effects, and extended its application across multiple cell lines presented in LINCS to predict aging gene regulating effects induced by small molecules. As a result, a quantitative chemogenomic Deep Model was trained using gene ontology labels, molecular fingerprints, and cell line descriptors to predict gene expression responses to chemical perturbations. Other state-of-the-art machine learning approaches were also evaluated as benchmarks. Among those, the deep neural network (DNN) classifier has top-ranked known drugs with beneficial effects on aging genes, and some of these drugs were previously shown to promote longevity, illustrating the potential utility of this methodology. These results further demonstrate the capability of "hybrid" chemogenomic models, incorporating quantitative descriptors from biomarkers to capture cell specific drug-gene interactions. Such models can therefore be used for discovering drugs with desired gene regulatory effects associated with longevity.
Palavras-chave

Texto completo: 1 Bases de dados: MEDLINE Tipo de estudo: Prognostic_studies / Risk_factors_studies Idioma: En Revista: Pharmaceuticals (Basel) Ano de publicação: 2021 Tipo de documento: Article País de afiliação: Canadá

Texto completo: 1 Bases de dados: MEDLINE Tipo de estudo: Prognostic_studies / Risk_factors_studies Idioma: En Revista: Pharmaceuticals (Basel) Ano de publicação: 2021 Tipo de documento: Article País de afiliação: Canadá