Local Stability of McKean-Vlasov Equations Arising from Heterogeneous Gibbs Systems Using Limit of Relative Entropies.
Entropy (Basel)
; 23(11)2021 Oct 26.
Article
em En
| MEDLINE
| ID: mdl-34828105
A family of heterogeneous mean-field systems with jumps is analyzed. These systems are constructed as a Gibbs measure on block graphs. When the total number of particles goes to infinity, the law of large numbers is shown to hold in a multi-class context, resulting in the weak convergence of the empirical vector towards the solution of a McKean-Vlasov system of equations. We then investigate the local stability of the limiting McKean-Vlasov system through the construction of a local Lyapunov function. We first compute the limit of adequately scaled relative entropy functions associated with the explicit stationary distribution of the N-particles system. Using a Laplace principle for empirical vectors, we show that the limit takes an explicit form. Then we demonstrate that this limit satisfies a descent property, which, combined with some mild assumptions shows that it is indeed a local Lyapunov function.
Texto completo:
1
Bases de dados:
MEDLINE
Idioma:
En
Revista:
Entropy (Basel)
Ano de publicação:
2021
Tipo de documento:
Article
País de afiliação:
Canadá