Your browser doesn't support javascript.
loading
A Bayesian approach to modeling phytoplankton population dynamics from size distribution time series.
Mattern, Jann Paul; Glauninger, Kristof; Britten, Gregory L; Casey, John R; Hyun, Sangwon; Wu, Zhen; Armbrust, E Virginia; Harchaoui, Zaid; Ribalet, François.
Afiliação
  • Mattern JP; Ocean Sciences Department, UC Santa Cruz, Santa Cruz, California, United States of America.
  • Glauninger K; School of Oceanography, University of Washington, Seattle, Washington, United States of America.
  • Britten GL; Department of Statistics, University of Washington, Seattle, Washington, United States of America.
  • Casey JR; Program in Atmospheres, Oceans, and Climate, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America.
  • Hyun S; Program in Atmospheres, Oceans, and Climate, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America.
  • Wu Z; Department of Oceanography, University of Hawai'i at Manoa, Honolulu, Hawaii, United States of America.
  • Armbrust EV; Department of Data Sciences and Operations, University of Southern California, Los Angeles, California, United States of America.
  • Harchaoui Z; Program in Atmospheres, Oceans, and Climate, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America.
  • Ribalet F; School of Oceanography, University of Washington, Seattle, Washington, United States of America.
PLoS Comput Biol ; 18(1): e1009733, 2022 01.
Article em En | MEDLINE | ID: mdl-35030163
ABSTRACT
The rates of cell growth, division, and carbon loss of microbial populations are key parameters for understanding how organisms interact with their environment and how they contribute to the carbon cycle. However, the invasive nature of current analytical methods has hindered efforts to reliably quantify these parameters. In recent years, size-structured matrix population models (MPMs) have gained popularity for estimating division rates of microbial populations by mechanistically describing changes in microbial cell size distributions over time. Motivated by the mechanistic structure of these models, we employ a Bayesian approach to extend size-structured MPMs to capture additional biological processes describing the dynamics of a marine phytoplankton population over the day-night cycle. Our Bayesian framework is able to take prior scientific knowledge into account and generate biologically interpretable results. Using data from an exponentially growing laboratory culture of the cyanobacterium Prochlorococcus, we isolate respiratory and exudative carbon losses as critical parameters for the modeling of their population dynamics. The results suggest that this modeling framework can provide deeper insights into microbial population dynamics provided by size distribution time-series data.
Assuntos

Texto completo: 1 Bases de dados: MEDLINE Assunto principal: Fitoplâncton / Dinâmica Populacional / Teorema de Bayes / Biologia Computacional / Modelos Biológicos Tipo de estudo: Prognostic_studies Idioma: En Revista: PLoS Comput Biol Assunto da revista: BIOLOGIA / INFORMATICA MEDICA Ano de publicação: 2022 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Bases de dados: MEDLINE Assunto principal: Fitoplâncton / Dinâmica Populacional / Teorema de Bayes / Biologia Computacional / Modelos Biológicos Tipo de estudo: Prognostic_studies Idioma: En Revista: PLoS Comput Biol Assunto da revista: BIOLOGIA / INFORMATICA MEDICA Ano de publicação: 2022 Tipo de documento: Article País de afiliação: Estados Unidos