Identifying Novel Inhibitors for Hepatic Organic Anion Transporting Polypeptides by Machine Learning-Based Virtual Screening.
J Chem Inf Model
; 62(24): 6323-6335, 2022 12 26.
Article
em En
| MEDLINE
| ID: mdl-35274943
Integration of statistical learning methods with structure-based modeling approaches is a contemporary strategy to identify novel lead compounds in drug discovery. Hepatic organic anion transporting polypeptides (OATP1B1, OATP1B3, and OATP2B1) are classical off-targets, and it is well recognized that their ability to interfere with a wide range of chemically unrelated drugs, environmental chemicals, or food additives can lead to unwanted adverse effects like liver toxicity and drug-drug or drug-food interactions. Therefore, the identification of novel (tool) compounds for hepatic OATPs by virtual screening approaches and subsequent experimental validation is a major asset for elucidating structure-function relationships of (related) transporters: they enhance our understanding about molecular determinants and structural aspects of hepatic OATPs driving ligand binding and selectivity. In the present study, we performed a consensus virtual screening approach by using different types of machine learning models (proteochemometric models, conformal prediction models, and XGBoost models for hepatic OATPs), followed by molecular docking of preselected hits using previously established structural models for hepatic OATPs. Screening the diverse REAL drug-like set (Enamine) shows a comparable hit rate for OATP1B1 (36% actives) and OATP1B3 (32% actives), while the hit rate for OATP2B1 was even higher (66% actives). Percentage inhibition values for 44 selected compounds were determined using dedicated in vitro assays and guided the prioritization of several highly potent novel hepatic OATP inhibitors: six (strong) OATP2B1 inhibitors (IC50 values ranging from 0.04 to 6 µM), three OATP1B1 inhibitors (2.69 to 10 µM), and five OATP1B3 inhibitors (1.53 to 10 µM) were identified. Strikingly, two novel OATP2B1 inhibitors were uncovered (C7 and H5) which show high affinity (IC50 values: 40 nM and 390 nM) comparable to the recently described estrone-based inhibitor (IC50 = 41 nM). A molecularly detailed explanation for the observed differences in ligand binding to the three transporters is given by means of structural comparison of the detected binding sites and docking poses.
Texto completo:
1
Bases de dados:
MEDLINE
Assunto principal:
Transportadores de Ânions Orgânicos
Tipo de estudo:
Diagnostic_studies
/
Prognostic_studies
/
Screening_studies
Idioma:
En
Revista:
J Chem Inf Model
Assunto da revista:
INFORMATICA MEDICA
/
QUIMICA
Ano de publicação:
2022
Tipo de documento:
Article
País de afiliação:
Áustria