Pyrene-Based Dopant-Free Hole-Transport Polymers with Fluorine-Induced Favorable Molecular Stacking Enable Efficient Perovskite Solar Cells.
Angew Chem Int Ed Engl
; 61(24): e202201847, 2022 Jun 13.
Article
em En
| MEDLINE
| ID: mdl-35304803
A new class of polymeric hole-transport materials (HTMs) are explored by inserting a two-dimensionally conjugated fluoro-substituted pyrene into thiophene and selenophene polymeric chains. The broad conjugated plane of pyrene and "Lewis soft" selenium atoms not only enhance the π-π stacking of HTM molecules greatly but also render a strong interaction with the perovskite surface, leading to an efficient charge transport/transfer in both the HTM layer and the perovskite/HTM interface. Note that fluorine substitution adjacent to pyrene boosts the stacking of HTMs towards a more favorable face-on orientation, further facilitating the efficient charge transport. As a result, perovskite solar cells (PSCs) employing PE10 as dopant-free HTM afford an excellent efficiency of 22.3 % and the dramatically enhanced device longevity, qualifying it among the best PSCs based on dopant-free HTMs.
Texto completo:
1
Bases de dados:
MEDLINE
Idioma:
En
Revista:
Angew Chem Int Ed Engl
Ano de publicação:
2022
Tipo de documento:
Article
País de afiliação:
China