Your browser doesn't support javascript.
loading
Immobilization and recycling of contaminated marine sediments in cement-based materials incorporating iron-biochar composites.
Wang, Qiming; Li, Jiang-Shan; Xue, Qiang; Poon, Chi Sun.
Afiliação
  • Wang Q; Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong; IRSM-CAS/HK PolyU Joint Laboratory on Solid Waste Science, Hung Hom, Kowloon, Hong Kong; Research Centre for Resources Engineering towards Carbon Neutrality, The Hong Kong Polytechn
  • Li JS; State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China; IRSM-CAS/HK PolyU Joint Laboratory on Solid Waste Science, Hung Hom, Kowloon, Hong Kong. Electronic address: jsli@whrsm.ac.cn.
  • Xue Q; State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China; IRSM-CAS/HK PolyU Joint Laboratory on Solid Waste Science, Hung Hom, Kowloon, Hong Kong.
  • Poon CS; Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong; IRSM-CAS/HK PolyU Joint Laboratory on Solid Waste Science, Hung Hom, Kowloon, Hong Kong; Research Centre for Resources Engineering towards Carbon Neutrality, The Hong Kong Polytechn
J Hazard Mater ; 435: 128971, 2022 08 05.
Article em En | MEDLINE | ID: mdl-35472547
ABSTRACT
Sustainable stabilization/solidification (S/S) incorporating biochar for hazardous wastes has attracted increasing attention. In this study, contaminated marine sediments were remediated and recycled as useful materials via cement-based S/S process incorporating iron-biochar composites derived from incinerated sewage sludge ash (ISSA) and peanut shell. Results showed that incorporation of 20% iron-biochar composites notably increased the Cr immobilization (52.8% vs 92.1-99.7%), while attained similar As (70%) and Cu (95%) immobilization efficiencies compared to the control group (CK) prepared with plain cement as the binder based on the Toxicity Characteristic Leaching Procedure. S/S products with the addition of ISSA derived iron-biochar composite had a mechanical strength of 5.0 MPa, which was significantly higher than its counterparts derived from pure iron oxide or pristine biochar (< 4.5 MPa). Microstructural and spectroscopic characterizations and chemical leaching experiments demonstrated that reduction of Cr(VI) to Cr(III) followed by formation of Cr-Fe precipitates by zero valent iron in iron-biochar composites contributed to the enhanced immobilization efficacy of Cr(VI) compared to CK. Overall, these results demonstrated the potential of applying ISSA and peanut shell derived iron-biochar composites as additives in the cement-based S/S treatment for contaminated sediments.
Assuntos
Palavras-chave

Texto completo: 1 Bases de dados: MEDLINE Assunto principal: Carvão Vegetal / Ferro Idioma: En Revista: J Hazard Mater Assunto da revista: SAUDE AMBIENTAL Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Bases de dados: MEDLINE Assunto principal: Carvão Vegetal / Ferro Idioma: En Revista: J Hazard Mater Assunto da revista: SAUDE AMBIENTAL Ano de publicação: 2022 Tipo de documento: Article