Your browser doesn't support javascript.
loading
Surprising Chemistry of 6-Azidotetrazolo[5,1-a]phthalazine: What a Purported Natural Product Reveals about the Polymorphism of Explosives.
Nunez Avila, Aaron Gabriel; Deschênes-Simard, Benoît; Arnold, Joseph E; Morency, Mathieu; Chartrand, Daniel; Maris, Thierry; Berger, Gilles; Day, Graeme M; Hanessian, Stephen; Wuest, James D.
Afiliação
  • Nunez Avila AG; Département de Chimie, Université de Montréal, Montréal, Québec H2V 0B3, Canada.
  • Deschênes-Simard B; Département de Chimie, Université de Montréal, Montréal, Québec H2V 0B3, Canada.
  • Arnold JE; School of Chemistry, University of Southampton, University Road, Southampton SO17 1BJ, U.K.
  • Morency M; Département de Chimie, Université de Montréal, Montréal, Québec H2V 0B3, Canada.
  • Chartrand D; Département de Chimie, Université de Montréal, Montréal, Québec H2V 0B3, Canada.
  • Maris T; Département de Chimie, Université de Montréal, Montréal, Québec H2V 0B3, Canada.
  • Berger G; Microbiologie, Chimie bioorganique et macromoléculaire, Faculté de Pharmacie, Université libre de Bruxelles (ULB), Boulevard du Triomphe, Bruxelles 1050, Belgium.
  • Day GM; School of Chemistry, University of Southampton, University Road, Southampton SO17 1BJ, U.K.
  • Hanessian S; Département de Chimie, Université de Montréal, Montréal, Québec H2V 0B3, Canada.
  • Wuest JD; Département de Chimie, Université de Montréal, Montréal, Québec H2V 0B3, Canada.
J Org Chem ; 87(10): 6680-6694, 2022 05 20.
Article em En | MEDLINE | ID: mdl-35504046
6-Azidotetrazolo[5,1-a]phthalazine (ATPH) is a nitrogen-rich compound of surprisingly broad interest. It is purported to be a natural product, yet it is closely related to substances developed as explosives and is highly polymorphic despite having a nearly planar structure with little flexibility. Seven solid forms of ATPH have been characterized by single-crystal X-ray diffraction. The structures show diverse patterns of molecular organization, including both stacked sheets and herringbone packing. In all cases, N···N and C-H···N interactions play key roles in ensuring molecular cohesion. The high polymorphism of ATPH appears to arise in part from the ability of virtually every atom of nitrogen and hydrogen in the molecule to take part in close N···N and C-H···N contacts. As a result, adjacent molecules can adopt many different relative orientations that are energetically similar, thereby generating a polymorphic landscape with an unusually high density of potential structures. This landscape has been explored in detail by the computational prediction of crystal structures. Studying ATPH has provided insights into the field of energetic materials, where access to multiple polymorphs can be used to improve performance and clarify how it depends on molecular packing. In addition, our work with ATPH shows how valuable insights into molecular crystallization, often gleaned from statistical analyses of structural databases, can also come from in-depth empirical and theoretical studies of single compounds that show distinctive behavior.
Assuntos

Texto completo: 1 Bases de dados: MEDLINE Assunto principal: Produtos Biológicos / Substâncias Explosivas Idioma: En Revista: J Org Chem Ano de publicação: 2022 Tipo de documento: Article País de afiliação: Canadá

Texto completo: 1 Bases de dados: MEDLINE Assunto principal: Produtos Biológicos / Substâncias Explosivas Idioma: En Revista: J Org Chem Ano de publicação: 2022 Tipo de documento: Article País de afiliação: Canadá