Your browser doesn't support javascript.
loading
Cellular imaging properties of phosphorescent iridium(III) complexes substituted with ester or amide groups.
Dai, Peiling; Li, Jiangshan; Tang, Man; Yan, Dong; Xu, Zihan; Li, Yonghua; Chen, Zejing; Liu, Shujuan; Zhao, Qiang; Zhang, Kenneth Yin.
Afiliação
  • Dai P; State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM) & Institute of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, P
  • Li J; State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM) & Institute of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, P
  • Tang M; State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM) & Institute of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, P
  • Yan D; State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM) & Institute of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, P
  • Xu Z; State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM) & Institute of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, P
  • Li Y; State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM) & Institute of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, P
  • Chen Z; State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM) & Institute of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, P
  • Liu S; Jiangxi Key Laboratory for Nano-Biomaterials, Institute of Advanced Materials (IAM), East China Jiaotong University, Nanchang 330013, P. R. China.
  • Zhao Q; State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM) & Institute of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, P
  • Zhang KY; State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM) & Institute of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, P
Dalton Trans ; 51(27): 10501-10506, 2022 Jul 12.
Article em En | MEDLINE | ID: mdl-35766239
ABSTRACT
Phosphorescent iridium(III) complexes have been extensively investigated as cellular imaging reagents and sensors. The intracellular localization of the complexes is known to be closely related to their formal charge, molecular size, lipophilicity, and bioactive pendants. Herein, we reported four phosphorescent iridium(III) complexes with the diimine ligands being modified with ester or amide groups as imaging reagents for living cells. The complexes have the same positive charge and very similar molecular size and weight. The lipophilicity of the complexes is similar ranging from 1.45 to 2.14. Upon internalization into living HeLa cells, while complexes 2-4, like most other iridium(III) complexes, were localized in the cytoplasm, complex 1 unexpectedly stained the whole cells including nuclei. The nuclear uptake of complex 1 was not observed when the cells were pretreated with chlorpromazine or nocodazole, suggesting that clathrin and microtubules mediated the nuclear uptake of complex 1. Additionally, the nuclear uptake efficiency is related to the cell division cycle. The complex was mainly concentrated in the nucleus when the cells were in mitosis, and distributed in whole cells when the cells were in the interphases. Furthermore, complex 1 exhibited a longer luminescence lifetime in the nucleus than in the cytoplasm as revealed by photoluminescence lifetime imaging microscopy (PLIM). Incubation of the cells in the hypoxia environment elongated the lifetime of the cytoplasmic complex, but hardly affected the luminescence properties of the intranuclear complex.
Assuntos

Texto completo: 1 Bases de dados: MEDLINE Assunto principal: Ésteres / Irídio Limite: Humans Idioma: En Revista: Dalton Trans Assunto da revista: QUIMICA Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Bases de dados: MEDLINE Assunto principal: Ésteres / Irídio Limite: Humans Idioma: En Revista: Dalton Trans Assunto da revista: QUIMICA Ano de publicação: 2022 Tipo de documento: Article