Your browser doesn't support javascript.
loading
Preventing falls: the use of machine learning for the prediction of future falls in individuals without history of fall.
Bargiotas, Ioannis; Wang, Danping; Mantilla, Juan; Quijoux, Flavien; Moreau, Albane; Vidal, Catherine; Barrois, Remi; Nicolai, Alice; Audiffren, Julien; Labourdette, Christophe; Bertin-Hugaul, François; Oudre, Laurent; Buffat, Stephane; Yelnik, Alain; Ricard, Damien; Vayatis, Nicolas; Vidal, Pierre-Paul.
Afiliação
  • Bargiotas I; Centre Borelli, CNRS, SSA, INSERM, Université Paris Saclay, Université Paris Cité, ENS Paris Saclay, Gif-sur-Yvette, 91190, France. ioannis.bargiotas@ens-paris-saclay.fr.
  • Wang D; Centre Borelli, CNRS, SSA, INSERM, Université Paris Cité, Université Paris Saclay, ENS Paris Saclay, Paris, 75006, France. ioannis.bargiotas@ens-paris-saclay.fr.
  • Mantilla J; Centre Borelli, CNRS, SSA, INSERM, Université Paris Saclay, Université Paris Cité, ENS Paris Saclay, Gif-sur-Yvette, 91190, France.
  • Quijoux F; Centre Borelli, CNRS, SSA, INSERM, Université Paris Cité, Université Paris Saclay, ENS Paris Saclay, Paris, 75006, France.
  • Moreau A; Centre Borelli, CNRS, SSA, INSERM, Université Paris Saclay, Université Paris Cité, ENS Paris Saclay, Gif-sur-Yvette, 91190, France.
  • Vidal C; Centre Borelli, CNRS, SSA, INSERM, Université Paris Cité, Université Paris Saclay, ENS Paris Saclay, Paris, 75006, France.
  • Barrois R; Centre Borelli, CNRS, SSA, INSERM, Université Paris Saclay, Université Paris Cité, ENS Paris Saclay, Gif-sur-Yvette, 91190, France.
  • Nicolai A; Centre Borelli, CNRS, SSA, INSERM, Université Paris Cité, Université Paris Saclay, ENS Paris Saclay, Paris, 75006, France.
  • Audiffren J; ORPEA Group, Puteaux, France.
  • Labourdette C; Centre Borelli, CNRS, SSA, INSERM, Université Paris Saclay, Université Paris Cité, ENS Paris Saclay, Gif-sur-Yvette, 91190, France.
  • Bertin-Hugaul F; Centre Borelli, CNRS, SSA, INSERM, Université Paris Cité, Université Paris Saclay, ENS Paris Saclay, Paris, 75006, France.
  • Oudre L; Centre Borelli, CNRS, SSA, INSERM, Université Paris Saclay, Université Paris Cité, ENS Paris Saclay, Gif-sur-Yvette, 91190, France.
  • Buffat S; Centre Borelli, CNRS, SSA, INSERM, Université Paris Cité, Université Paris Saclay, ENS Paris Saclay, Paris, 75006, France.
  • Yelnik A; Service of Otorhinolaryngology (ENT), AP-HP, Hôpital Universitaire Pitié Salpêtrière, Paris, 75013, France.
  • Ricard D; Centre Borelli, CNRS, SSA, INSERM, Université Paris Saclay, Université Paris Cité, ENS Paris Saclay, Gif-sur-Yvette, 91190, France.
  • Vayatis N; Centre Borelli, CNRS, SSA, INSERM, Université Paris Cité, Université Paris Saclay, ENS Paris Saclay, Paris, 75006, France.
  • Vidal PP; Centre Borelli, CNRS, SSA, INSERM, Université Paris Saclay, Université Paris Cité, ENS Paris Saclay, Gif-sur-Yvette, 91190, France.
J Neurol ; 270(2): 618-631, 2023 Feb.
Article em En | MEDLINE | ID: mdl-35817988
Nowadays, it becomes of paramount societal importance to support many frail-prone groups in our society (elderly, patients with neurodegenerative diseases, etc.) to remain socially and physically active, maintain their quality of life, and avoid their loss of autonomy. Once older people enter the prefrail stage, they are already likely to experience falls whose consequences may accelerate the deterioration of their quality of life (injuries, fear of falling, reduction of physical activity). In that context, detecting frailty and high risk of fall at an early stage is the first line of defense against the detrimental consequences of fall. The second line of defense would be to develop original protocols to detect future fallers before any fall occur. This paper briefly summarizes the current advancements and perspectives that may arise from the combination of affordable and easy-to-use non-wearable systems (force platforms, 3D tracking motion systems), wearable systems (accelerometers, gyroscopes, inertial measurement units-IMUs) with appropriate machine learning analytics, as well as the efforts to address these challenges.
Assuntos
Palavras-chave

Texto completo: 1 Bases de dados: MEDLINE Assunto principal: Qualidade de Vida / Fragilidade Tipo de estudo: Prognostic_studies / Risk_factors_studies Limite: Aged / Humans Idioma: En Revista: J Neurol Ano de publicação: 2023 Tipo de documento: Article País de afiliação: França

Texto completo: 1 Bases de dados: MEDLINE Assunto principal: Qualidade de Vida / Fragilidade Tipo de estudo: Prognostic_studies / Risk_factors_studies Limite: Aged / Humans Idioma: En Revista: J Neurol Ano de publicação: 2023 Tipo de documento: Article País de afiliação: França