Your browser doesn't support javascript.
loading
Automated Chicago Classification for Esophageal Motility Disorder Diagnosis Using Machine Learning.
Surdea-Blaga, Teodora; Sebestyen, Gheorghe; Czako, Zoltan; Hangan, Anca; Dumitrascu, Dan Lucian; Ismaiel, Abdulrahman; David, Liliana; Zsigmond, Imre; Chiarioni, Giuseppe; Savarino, Edoardo; Leucuta, Daniel Corneliu; Popa, Stefan Lucian.
Afiliação
  • Surdea-Blaga T; Second Medical Department, "Iuliu Hatieganu" University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania.
  • Sebestyen G; Computer Science Department, Technical University of Cluj-Napoca, 400114 Cluj-Napoca, Romania.
  • Czako Z; Computer Science Department, Technical University of Cluj-Napoca, 400114 Cluj-Napoca, Romania.
  • Hangan A; Computer Science Department, Technical University of Cluj-Napoca, 400114 Cluj-Napoca, Romania.
  • Dumitrascu DL; Second Medical Department, "Iuliu Hatieganu" University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania.
  • Ismaiel A; Second Medical Department, "Iuliu Hatieganu" University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania.
  • David L; Second Medical Department, "Iuliu Hatieganu" University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania.
  • Zsigmond I; Faculty of Mathematics and Computer Science, Babes-Bolyai University, 400347 Cluj-Napoca, Romania.
  • Chiarioni G; Division of Gastroenterology, AOUI Verona, University of Verona, 37134 Verona, Italy.
  • Savarino E; Gastroenterology Unit, Department of Surgery, Oncology and Gastroenterology, University of Padua, 35122 Padova, Italy.
  • Leucuta DC; Department of Medical Informatics and Biostatistics, "Iuliu Hatieganu" University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania.
  • Popa SL; Second Medical Department, "Iuliu Hatieganu" University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania.
Sensors (Basel) ; 22(14)2022 Jul 13.
Article em En | MEDLINE | ID: mdl-35890906
The goal of this paper is to provide a Machine Learning-based solution that can be utilized to automate the Chicago Classification algorithm, the state-of-the-art scheme for esophageal motility disease identification. First, the photos were preprocessed by locating the area of interest-the precise instant of swallowing. After resizing and rescaling the photos, they were utilized as input for the Deep Learning models. The InceptionV3 Deep Learning model was used to identify the precise class of the IRP. We used the DenseNet201 CNN architecture to classify the images into 5 different classes of swallowing disorders. Finally, we combined the results of the two trained ML models to automate the Chicago Classification algorithm. With this solution we obtained a top-1 accuracy and f1-score of 86% with no human intervention, automating the whole flow, from image preprocessing until Chicago classification and diagnosis.
Assuntos
Palavras-chave

Texto completo: 1 Bases de dados: MEDLINE Assunto principal: Transtornos da Motilidade Esofágica Tipo de estudo: Diagnostic_studies / Prognostic_studies Limite: Humans Idioma: En Revista: Sensors (Basel) Ano de publicação: 2022 Tipo de documento: Article País de afiliação: Romênia

Texto completo: 1 Bases de dados: MEDLINE Assunto principal: Transtornos da Motilidade Esofágica Tipo de estudo: Diagnostic_studies / Prognostic_studies Limite: Humans Idioma: En Revista: Sensors (Basel) Ano de publicação: 2022 Tipo de documento: Article País de afiliação: Romênia