Your browser doesn't support javascript.
loading
Jitter-Robust Phase Retrieval Wavefront Sensing Algorithms.
Guo, Liang; Ju, Guohao; Xu, Boqian; Bai, Xiaoquan; Meng, Qingyu; Jiang, Fengyi; Xu, Shuyan.
Afiliação
  • Guo L; Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China.
  • Ju G; University of Chinese Academy of Sciences, Beijing 100049, China.
  • Xu B; Chinese Academy of Sciences Key Laboratory of On-Orbit Manufacturing and Integration for Space Optics System, Changchun 130033, China.
  • Bai X; Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China.
  • Meng Q; Chinese Academy of Sciences Key Laboratory of On-Orbit Manufacturing and Integration for Space Optics System, Changchun 130033, China.
  • Jiang F; Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China.
  • Xu S; Chinese Academy of Sciences Key Laboratory of On-Orbit Manufacturing and Integration for Space Optics System, Changchun 130033, China.
Sensors (Basel) ; 22(15)2022 Jul 26.
Article em En | MEDLINE | ID: mdl-35898086
Phase retrieval wavefront sensing methods are now of importance for imaging quality maintenance of space telescopes. However, their accuracy is susceptible to line-of-sight jitter due to the micro-vibration of the platform, which changes the intensity distribution of the image. The effect of the jitter shows some stochastic properties and it is hard to present an analytic solution to this problem. This paper establishes a framework for jitter-robust image-based wavefront sensing algorithm, which utilizes two-dimensional Gaussian convolution to describe the effect of jitter on an image. On this basis, two classes of jitter-robust phase retrieval algorithms are proposed, which can be categorized into iterative-transform algorithms and parametric algorithms, respectively. Further discussions are presented for the cases where the magnitude of jitter is unknown to us. Detailed simulations and a real experiment are performed to demonstrate the effectiveness and practicality of the proposed approaches. This work improves the accuracy and practicality of the phase retrieval wavefront sensing methods in the space condition with non-ignorable micro-vibration.
Palavras-chave

Texto completo: 1 Bases de dados: MEDLINE Idioma: En Revista: Sensors (Basel) Ano de publicação: 2022 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Bases de dados: MEDLINE Idioma: En Revista: Sensors (Basel) Ano de publicação: 2022 Tipo de documento: Article País de afiliação: China