Your browser doesn't support javascript.
loading
The origin of jerky dislocation motion in high-entropy alloys.
Utt, Daniel; Lee, Subin; Xing, Yaolong; Jeong, Hyejin; Stukowski, Alexander; Oh, Sang Ho; Dehm, Gerhard; Albe, Karsten.
Afiliação
  • Utt D; Fachgebiet Materialmodellierung, Institut für Materialwissenschaft, Technische Universität Darmstadt, Darmstadt, Germany.
  • Lee S; Structure and Nano-/Micromechanics of Materials, Max-Planck-Institut für Eisenforschung GmbH, Düsseldorf, Germany.
  • Xing Y; Center for Integrated Nanostructure Physics, Institute for Basic Science, Suwon, Republic of Korea.
  • Jeong H; Institute for Applied Materials, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany.
  • Stukowski A; Department of Energy Science, Sungkyunkwan University, Suwon, Republic of Korea.
  • Oh SH; Department of Energy Science, Sungkyunkwan University, Suwon, Republic of Korea.
  • Dehm G; Fachgebiet Materialmodellierung, Institut für Materialwissenschaft, Technische Universität Darmstadt, Darmstadt, Germany.
  • Albe K; Department of Energy Science, Sungkyunkwan University, Suwon, Republic of Korea. shoh@kentech.ac.kr.
Nat Commun ; 13(1): 4777, 2022 Aug 15.
Article em En | MEDLINE | ID: mdl-35970838
ABSTRACT
Dislocations in single-phase concentrated random alloys, including high-entropy alloys (HEAs), repeatedly encounter pinning during glide, resulting in jerky dislocation motion. While solute-dislocation interaction is well understood in conventional alloys, the origin of individual pinning points in concentrated random alloys is a matter of debate. In this work, we investigate the origin of dislocation pinning in the CoCrFeMnNi HEA. In-situ transmission electron microscopy studies reveal wavy dislocation lines and a jagged glide motion under external loading, even though no segregation or clustering is found around Shockley partial dislocations. Atomistic simulations reproduce the jerky dislocation motion and link the repeated pinning to local fluctuations in the Peierls friction. We demonstrate that the density of high local Peierls friction is proportional to the critical stress required for dislocation glide and the dislocation mobility.

Texto completo: 1 Bases de dados: MEDLINE Idioma: En Revista: Nat Commun Assunto da revista: BIOLOGIA / CIENCIA Ano de publicação: 2022 Tipo de documento: Article País de afiliação: Alemanha

Texto completo: 1 Bases de dados: MEDLINE Idioma: En Revista: Nat Commun Assunto da revista: BIOLOGIA / CIENCIA Ano de publicação: 2022 Tipo de documento: Article País de afiliação: Alemanha