Your browser doesn't support javascript.
loading
The Phenotypic Continuum of ATP1A3-Related Disorders.
Vezyroglou, Aikaterini; Akilapa, Rhoda; Barwick, Katy; Koene, Saskia; Brownstein, Catherine A; Holder-Espinasse, Muriel; Fry, Andrew E; Németh, Andrea H; Tofaris, George K; Hay, Eleanor; Hughes, Imelda; Mansour, Sahar; Mordekar, Santosh R; Splitt, Miranda; Turnpenny, Peter D; Demetriou, Demetria; Koopmann, Tamara T; Ruivenkamp, Claudia A L; Agrawal, Pankaj B; Carr, Lucinda; Clowes, Virginia; Ghali, Neeti; Holder, Susan Elizabeth; Radley, Jessica; Male, Alison; Sisodiya, Sanjay M; Kurian, Manju A; Cross, J Helen; Balasubramanian, Meena.
Afiliação
  • Vezyroglou A; From the Developmental Neurosciences (A.V., K.B., M.A.K., J.H.C.), UCL Great Ormond Street Institute of Child Health, London, UK; Department of Neurology (A.V., L.C., M.A.K., J.H.C.), Great Ormond Street Hospital, London, UK; Department of Clinical Genetics (R.A., M.H.-E.), Guy's and St Thomas' NHS
  • Akilapa R; From the Developmental Neurosciences (A.V., K.B., M.A.K., J.H.C.), UCL Great Ormond Street Institute of Child Health, London, UK; Department of Neurology (A.V., L.C., M.A.K., J.H.C.), Great Ormond Street Hospital, London, UK; Department of Clinical Genetics (R.A., M.H.-E.), Guy's and St Thomas' NHS
  • Barwick K; From the Developmental Neurosciences (A.V., K.B., M.A.K., J.H.C.), UCL Great Ormond Street Institute of Child Health, London, UK; Department of Neurology (A.V., L.C., M.A.K., J.H.C.), Great Ormond Street Hospital, London, UK; Department of Clinical Genetics (R.A., M.H.-E.), Guy's and St Thomas' NHS
  • Koene S; From the Developmental Neurosciences (A.V., K.B., M.A.K., J.H.C.), UCL Great Ormond Street Institute of Child Health, London, UK; Department of Neurology (A.V., L.C., M.A.K., J.H.C.), Great Ormond Street Hospital, London, UK; Department of Clinical Genetics (R.A., M.H.-E.), Guy's and St Thomas' NHS
  • Brownstein CA; From the Developmental Neurosciences (A.V., K.B., M.A.K., J.H.C.), UCL Great Ormond Street Institute of Child Health, London, UK; Department of Neurology (A.V., L.C., M.A.K., J.H.C.), Great Ormond Street Hospital, London, UK; Department of Clinical Genetics (R.A., M.H.-E.), Guy's and St Thomas' NHS
  • Holder-Espinasse M; From the Developmental Neurosciences (A.V., K.B., M.A.K., J.H.C.), UCL Great Ormond Street Institute of Child Health, London, UK; Department of Neurology (A.V., L.C., M.A.K., J.H.C.), Great Ormond Street Hospital, London, UK; Department of Clinical Genetics (R.A., M.H.-E.), Guy's and St Thomas' NHS
  • Fry AE; From the Developmental Neurosciences (A.V., K.B., M.A.K., J.H.C.), UCL Great Ormond Street Institute of Child Health, London, UK; Department of Neurology (A.V., L.C., M.A.K., J.H.C.), Great Ormond Street Hospital, London, UK; Department of Clinical Genetics (R.A., M.H.-E.), Guy's and St Thomas' NHS
  • Németh AH; From the Developmental Neurosciences (A.V., K.B., M.A.K., J.H.C.), UCL Great Ormond Street Institute of Child Health, London, UK; Department of Neurology (A.V., L.C., M.A.K., J.H.C.), Great Ormond Street Hospital, London, UK; Department of Clinical Genetics (R.A., M.H.-E.), Guy's and St Thomas' NHS
  • Tofaris GK; From the Developmental Neurosciences (A.V., K.B., M.A.K., J.H.C.), UCL Great Ormond Street Institute of Child Health, London, UK; Department of Neurology (A.V., L.C., M.A.K., J.H.C.), Great Ormond Street Hospital, London, UK; Department of Clinical Genetics (R.A., M.H.-E.), Guy's and St Thomas' NHS
  • Hay E; From the Developmental Neurosciences (A.V., K.B., M.A.K., J.H.C.), UCL Great Ormond Street Institute of Child Health, London, UK; Department of Neurology (A.V., L.C., M.A.K., J.H.C.), Great Ormond Street Hospital, London, UK; Department of Clinical Genetics (R.A., M.H.-E.), Guy's and St Thomas' NHS
  • Hughes I; From the Developmental Neurosciences (A.V., K.B., M.A.K., J.H.C.), UCL Great Ormond Street Institute of Child Health, London, UK; Department of Neurology (A.V., L.C., M.A.K., J.H.C.), Great Ormond Street Hospital, London, UK; Department of Clinical Genetics (R.A., M.H.-E.), Guy's and St Thomas' NHS
  • Mansour S; From the Developmental Neurosciences (A.V., K.B., M.A.K., J.H.C.), UCL Great Ormond Street Institute of Child Health, London, UK; Department of Neurology (A.V., L.C., M.A.K., J.H.C.), Great Ormond Street Hospital, London, UK; Department of Clinical Genetics (R.A., M.H.-E.), Guy's and St Thomas' NHS
  • Mordekar SR; From the Developmental Neurosciences (A.V., K.B., M.A.K., J.H.C.), UCL Great Ormond Street Institute of Child Health, London, UK; Department of Neurology (A.V., L.C., M.A.K., J.H.C.), Great Ormond Street Hospital, London, UK; Department of Clinical Genetics (R.A., M.H.-E.), Guy's and St Thomas' NHS
  • Splitt M; From the Developmental Neurosciences (A.V., K.B., M.A.K., J.H.C.), UCL Great Ormond Street Institute of Child Health, London, UK; Department of Neurology (A.V., L.C., M.A.K., J.H.C.), Great Ormond Street Hospital, London, UK; Department of Clinical Genetics (R.A., M.H.-E.), Guy's and St Thomas' NHS
  • Turnpenny PD; From the Developmental Neurosciences (A.V., K.B., M.A.K., J.H.C.), UCL Great Ormond Street Institute of Child Health, London, UK; Department of Neurology (A.V., L.C., M.A.K., J.H.C.), Great Ormond Street Hospital, London, UK; Department of Clinical Genetics (R.A., M.H.-E.), Guy's and St Thomas' NHS
  • Demetriou D; From the Developmental Neurosciences (A.V., K.B., M.A.K., J.H.C.), UCL Great Ormond Street Institute of Child Health, London, UK; Department of Neurology (A.V., L.C., M.A.K., J.H.C.), Great Ormond Street Hospital, London, UK; Department of Clinical Genetics (R.A., M.H.-E.), Guy's and St Thomas' NHS
  • Koopmann TT; From the Developmental Neurosciences (A.V., K.B., M.A.K., J.H.C.), UCL Great Ormond Street Institute of Child Health, London, UK; Department of Neurology (A.V., L.C., M.A.K., J.H.C.), Great Ormond Street Hospital, London, UK; Department of Clinical Genetics (R.A., M.H.-E.), Guy's and St Thomas' NHS
  • Ruivenkamp CAL; From the Developmental Neurosciences (A.V., K.B., M.A.K., J.H.C.), UCL Great Ormond Street Institute of Child Health, London, UK; Department of Neurology (A.V., L.C., M.A.K., J.H.C.), Great Ormond Street Hospital, London, UK; Department of Clinical Genetics (R.A., M.H.-E.), Guy's and St Thomas' NHS
  • Agrawal PB; From the Developmental Neurosciences (A.V., K.B., M.A.K., J.H.C.), UCL Great Ormond Street Institute of Child Health, London, UK; Department of Neurology (A.V., L.C., M.A.K., J.H.C.), Great Ormond Street Hospital, London, UK; Department of Clinical Genetics (R.A., M.H.-E.), Guy's and St Thomas' NHS
  • Carr L; From the Developmental Neurosciences (A.V., K.B., M.A.K., J.H.C.), UCL Great Ormond Street Institute of Child Health, London, UK; Department of Neurology (A.V., L.C., M.A.K., J.H.C.), Great Ormond Street Hospital, London, UK; Department of Clinical Genetics (R.A., M.H.-E.), Guy's and St Thomas' NHS
  • Clowes V; From the Developmental Neurosciences (A.V., K.B., M.A.K., J.H.C.), UCL Great Ormond Street Institute of Child Health, London, UK; Department of Neurology (A.V., L.C., M.A.K., J.H.C.), Great Ormond Street Hospital, London, UK; Department of Clinical Genetics (R.A., M.H.-E.), Guy's and St Thomas' NHS
  • Ghali N; From the Developmental Neurosciences (A.V., K.B., M.A.K., J.H.C.), UCL Great Ormond Street Institute of Child Health, London, UK; Department of Neurology (A.V., L.C., M.A.K., J.H.C.), Great Ormond Street Hospital, London, UK; Department of Clinical Genetics (R.A., M.H.-E.), Guy's and St Thomas' NHS
  • Holder SE; From the Developmental Neurosciences (A.V., K.B., M.A.K., J.H.C.), UCL Great Ormond Street Institute of Child Health, London, UK; Department of Neurology (A.V., L.C., M.A.K., J.H.C.), Great Ormond Street Hospital, London, UK; Department of Clinical Genetics (R.A., M.H.-E.), Guy's and St Thomas' NHS
  • Radley J; From the Developmental Neurosciences (A.V., K.B., M.A.K., J.H.C.), UCL Great Ormond Street Institute of Child Health, London, UK; Department of Neurology (A.V., L.C., M.A.K., J.H.C.), Great Ormond Street Hospital, London, UK; Department of Clinical Genetics (R.A., M.H.-E.), Guy's and St Thomas' NHS
  • Male A; From the Developmental Neurosciences (A.V., K.B., M.A.K., J.H.C.), UCL Great Ormond Street Institute of Child Health, London, UK; Department of Neurology (A.V., L.C., M.A.K., J.H.C.), Great Ormond Street Hospital, London, UK; Department of Clinical Genetics (R.A., M.H.-E.), Guy's and St Thomas' NHS
  • Sisodiya SM; From the Developmental Neurosciences (A.V., K.B., M.A.K., J.H.C.), UCL Great Ormond Street Institute of Child Health, London, UK; Department of Neurology (A.V., L.C., M.A.K., J.H.C.), Great Ormond Street Hospital, London, UK; Department of Clinical Genetics (R.A., M.H.-E.), Guy's and St Thomas' NHS
  • Kurian MA; From the Developmental Neurosciences (A.V., K.B., M.A.K., J.H.C.), UCL Great Ormond Street Institute of Child Health, London, UK; Department of Neurology (A.V., L.C., M.A.K., J.H.C.), Great Ormond Street Hospital, London, UK; Department of Clinical Genetics (R.A., M.H.-E.), Guy's and St Thomas' NHS
  • Cross JH; From the Developmental Neurosciences (A.V., K.B., M.A.K., J.H.C.), UCL Great Ormond Street Institute of Child Health, London, UK; Department of Neurology (A.V., L.C., M.A.K., J.H.C.), Great Ormond Street Hospital, London, UK; Department of Clinical Genetics (R.A., M.H.-E.), Guy's and St Thomas' NHS
  • Balasubramanian M; From the Developmental Neurosciences (A.V., K.B., M.A.K., J.H.C.), UCL Great Ormond Street Institute of Child Health, London, UK; Department of Neurology (A.V., L.C., M.A.K., J.H.C.), Great Ormond Street Hospital, London, UK; Department of Clinical Genetics (R.A., M.H.-E.), Guy's and St Thomas' NHS
Neurology ; 99(14): e1511-e1526, 2022 10 04.
Article em En | MEDLINE | ID: mdl-36192182
ABSTRACT
BACKGROUND AND

OBJECTIVES:

ATP1A3 is associated with a broad spectrum of predominantly neurologic disorders, which continues to expand beyond the initially defined phenotypes of alternating hemiplegia of childhood, rapid-onset dystonia parkinsonism, and cerebellar ataxia, areflexia, pes cavus, optic atrophy, sensorineural hearing loss syndrome. This phenotypic variability makes it challenging to assess the pathogenicity of an ATP1A3 variant found in an undiagnosed patient. We describe the phenotypic features of individuals carrying a pathogenic/likely pathogenic ATP1A3 variant and perform a literature review of all ATP1A3 variants published thus far in association with human neurologic disease. Our aim is to demonstrate the heterogeneous clinical spectrum of the gene and look for phenotypic overlap between patients that will streamline the diagnostic process.

METHODS:

Undiagnosed individuals with ATP1A3 variants were identified within the cohort of the Deciphering Developmental Disorders study with additional cases contributed by collaborators internationally. Detailed clinical data were collected with consent through a questionnaire completed by the referring clinicians. PubMed was searched for publications containing the term "ATP1A3" from 2004 to 2021.

RESULTS:

Twenty-four individuals with a previously undiagnosed neurologic phenotype were found to carry 21 ATP1A3 variants. Eight variants have been previously published. Patients experienced on average 2-3 different types of paroxysmal events. Permanent neurologic features were common including microcephaly (7; 29%), ataxia (13; 54%), dystonia (10; 42%), and hypotonia (7; 29%). All patients had cognitive impairment. Neuropsychiatric diagnoses were reported in 16 (66.6%) individuals. Phenotypes were extremely varied, and most individuals did not fit clinical criteria for previously published phenotypes. On review of the literature, 1,108 individuals have been reported carrying 168 different ATP1A3 variants. The most common variants are associated with well-defined phenotypes, while more rare variants often result in very rare symptom correlations, such as are seen in our study. Combined Annotation-Dependent Depletion (CADD) scores of pathogenic and likely pathogenic variants were significantly higher and variants clustered within 6 regions of constraint.

DISCUSSION:

Our study shows that looking for a combination of paroxysmal events, hyperkinesia, neuropsychiatric symptoms, and cognitive impairment and evaluating the CADD score and variant location can help identify an ATP1A3-related condition, rather than applying diagnostic criteria alone.
Assuntos

Texto completo: 1 Bases de dados: MEDLINE Assunto principal: Ataxia Cerebelar / Distúrbios Distônicos Tipo de estudo: Prognostic_studies Limite: Humans Idioma: En Revista: Neurology Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Bases de dados: MEDLINE Assunto principal: Ataxia Cerebelar / Distúrbios Distônicos Tipo de estudo: Prognostic_studies Limite: Humans Idioma: En Revista: Neurology Ano de publicação: 2022 Tipo de documento: Article