Your browser doesn't support javascript.
loading
Somatic Variants in SVIL in Cerebral Aneurysms.
Lai, Pui Man Rosalind; Ryu, Jee-Yeon; Park, Sang-Cheol; Gross, Bradley A; Dickinson, Lawrence D; Dagen, Sarajune; Aziz-Sultan, Mohammad Ali; Boulos, Alan S; Barrow, Daniel L; Batjer, H Hunt; Blackburn, Spiros; Chang, Edward F; Chen, P Roc; Colby, Geoffrey P; Cosgrove, Garth Rees; David, Carlos A; Day, Arthur L; Frerichs, Kai U; Niemela, Mika; Ojemann, Steven G; Patel, Nirav J; Shi, Xiangen; Valle-Giler, Edison P; Wang, Anthony C; Welch, Babu G; Zusman, Edie E; Weiss, Scott T; Du, Rose.
Afiliação
  • Lai PMR; Department of Neurosurgery (P.M.R.L., J.-Y.R., S.-C.P., S.D., M.A.A.-S., G.R.C., K.U.F., N.J.P., R.D.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Artificial Intelligence and Robotics Laboratory (S.-C.P.), Myongji Hospital, Goyang, Korea; Department of Neurosurgery (B.A.G.), U
  • Ryu JY; Department of Neurosurgery (P.M.R.L., J.-Y.R., S.-C.P., S.D., M.A.A.-S., G.R.C., K.U.F., N.J.P., R.D.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Artificial Intelligence and Robotics Laboratory (S.-C.P.), Myongji Hospital, Goyang, Korea; Department of Neurosurgery (B.A.G.), U
  • Park SC; Department of Neurosurgery (P.M.R.L., J.-Y.R., S.-C.P., S.D., M.A.A.-S., G.R.C., K.U.F., N.J.P., R.D.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Artificial Intelligence and Robotics Laboratory (S.-C.P.), Myongji Hospital, Goyang, Korea; Department of Neurosurgery (B.A.G.), U
  • Gross BA; Department of Neurosurgery (P.M.R.L., J.-Y.R., S.-C.P., S.D., M.A.A.-S., G.R.C., K.U.F., N.J.P., R.D.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Artificial Intelligence and Robotics Laboratory (S.-C.P.), Myongji Hospital, Goyang, Korea; Department of Neurosurgery (B.A.G.), U
  • Dickinson LD; Department of Neurosurgery (P.M.R.L., J.-Y.R., S.-C.P., S.D., M.A.A.-S., G.R.C., K.U.F., N.J.P., R.D.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Artificial Intelligence and Robotics Laboratory (S.-C.P.), Myongji Hospital, Goyang, Korea; Department of Neurosurgery (B.A.G.), U
  • Dagen S; Department of Neurosurgery (P.M.R.L., J.-Y.R., S.-C.P., S.D., M.A.A.-S., G.R.C., K.U.F., N.J.P., R.D.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Artificial Intelligence and Robotics Laboratory (S.-C.P.), Myongji Hospital, Goyang, Korea; Department of Neurosurgery (B.A.G.), U
  • Aziz-Sultan MA; Department of Neurosurgery (P.M.R.L., J.-Y.R., S.-C.P., S.D., M.A.A.-S., G.R.C., K.U.F., N.J.P., R.D.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Artificial Intelligence and Robotics Laboratory (S.-C.P.), Myongji Hospital, Goyang, Korea; Department of Neurosurgery (B.A.G.), U
  • Boulos AS; Department of Neurosurgery (P.M.R.L., J.-Y.R., S.-C.P., S.D., M.A.A.-S., G.R.C., K.U.F., N.J.P., R.D.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Artificial Intelligence and Robotics Laboratory (S.-C.P.), Myongji Hospital, Goyang, Korea; Department of Neurosurgery (B.A.G.), U
  • Barrow DL; Department of Neurosurgery (P.M.R.L., J.-Y.R., S.-C.P., S.D., M.A.A.-S., G.R.C., K.U.F., N.J.P., R.D.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Artificial Intelligence and Robotics Laboratory (S.-C.P.), Myongji Hospital, Goyang, Korea; Department of Neurosurgery (B.A.G.), U
  • Batjer HH; Department of Neurosurgery (P.M.R.L., J.-Y.R., S.-C.P., S.D., M.A.A.-S., G.R.C., K.U.F., N.J.P., R.D.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Artificial Intelligence and Robotics Laboratory (S.-C.P.), Myongji Hospital, Goyang, Korea; Department of Neurosurgery (B.A.G.), U
  • Blackburn S; Department of Neurosurgery (P.M.R.L., J.-Y.R., S.-C.P., S.D., M.A.A.-S., G.R.C., K.U.F., N.J.P., R.D.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Artificial Intelligence and Robotics Laboratory (S.-C.P.), Myongji Hospital, Goyang, Korea; Department of Neurosurgery (B.A.G.), U
  • Chang EF; Department of Neurosurgery (P.M.R.L., J.-Y.R., S.-C.P., S.D., M.A.A.-S., G.R.C., K.U.F., N.J.P., R.D.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Artificial Intelligence and Robotics Laboratory (S.-C.P.), Myongji Hospital, Goyang, Korea; Department of Neurosurgery (B.A.G.), U
  • Chen PR; Department of Neurosurgery (P.M.R.L., J.-Y.R., S.-C.P., S.D., M.A.A.-S., G.R.C., K.U.F., N.J.P., R.D.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Artificial Intelligence and Robotics Laboratory (S.-C.P.), Myongji Hospital, Goyang, Korea; Department of Neurosurgery (B.A.G.), U
  • Colby GP; Department of Neurosurgery (P.M.R.L., J.-Y.R., S.-C.P., S.D., M.A.A.-S., G.R.C., K.U.F., N.J.P., R.D.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Artificial Intelligence and Robotics Laboratory (S.-C.P.), Myongji Hospital, Goyang, Korea; Department of Neurosurgery (B.A.G.), U
  • Cosgrove GR; Department of Neurosurgery (P.M.R.L., J.-Y.R., S.-C.P., S.D., M.A.A.-S., G.R.C., K.U.F., N.J.P., R.D.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Artificial Intelligence and Robotics Laboratory (S.-C.P.), Myongji Hospital, Goyang, Korea; Department of Neurosurgery (B.A.G.), U
  • David CA; Department of Neurosurgery (P.M.R.L., J.-Y.R., S.-C.P., S.D., M.A.A.-S., G.R.C., K.U.F., N.J.P., R.D.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Artificial Intelligence and Robotics Laboratory (S.-C.P.), Myongji Hospital, Goyang, Korea; Department of Neurosurgery (B.A.G.), U
  • Day AL; Department of Neurosurgery (P.M.R.L., J.-Y.R., S.-C.P., S.D., M.A.A.-S., G.R.C., K.U.F., N.J.P., R.D.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Artificial Intelligence and Robotics Laboratory (S.-C.P.), Myongji Hospital, Goyang, Korea; Department of Neurosurgery (B.A.G.), U
  • Frerichs KU; Department of Neurosurgery (P.M.R.L., J.-Y.R., S.-C.P., S.D., M.A.A.-S., G.R.C., K.U.F., N.J.P., R.D.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Artificial Intelligence and Robotics Laboratory (S.-C.P.), Myongji Hospital, Goyang, Korea; Department of Neurosurgery (B.A.G.), U
  • Niemela M; Department of Neurosurgery (P.M.R.L., J.-Y.R., S.-C.P., S.D., M.A.A.-S., G.R.C., K.U.F., N.J.P., R.D.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Artificial Intelligence and Robotics Laboratory (S.-C.P.), Myongji Hospital, Goyang, Korea; Department of Neurosurgery (B.A.G.), U
  • Ojemann SG; Department of Neurosurgery (P.M.R.L., J.-Y.R., S.-C.P., S.D., M.A.A.-S., G.R.C., K.U.F., N.J.P., R.D.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Artificial Intelligence and Robotics Laboratory (S.-C.P.), Myongji Hospital, Goyang, Korea; Department of Neurosurgery (B.A.G.), U
  • Patel NJ; Department of Neurosurgery (P.M.R.L., J.-Y.R., S.-C.P., S.D., M.A.A.-S., G.R.C., K.U.F., N.J.P., R.D.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Artificial Intelligence and Robotics Laboratory (S.-C.P.), Myongji Hospital, Goyang, Korea; Department of Neurosurgery (B.A.G.), U
  • Shi X; Department of Neurosurgery (P.M.R.L., J.-Y.R., S.-C.P., S.D., M.A.A.-S., G.R.C., K.U.F., N.J.P., R.D.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Artificial Intelligence and Robotics Laboratory (S.-C.P.), Myongji Hospital, Goyang, Korea; Department of Neurosurgery (B.A.G.), U
  • Valle-Giler EP; Department of Neurosurgery (P.M.R.L., J.-Y.R., S.-C.P., S.D., M.A.A.-S., G.R.C., K.U.F., N.J.P., R.D.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Artificial Intelligence and Robotics Laboratory (S.-C.P.), Myongji Hospital, Goyang, Korea; Department of Neurosurgery (B.A.G.), U
  • Wang AC; Department of Neurosurgery (P.M.R.L., J.-Y.R., S.-C.P., S.D., M.A.A.-S., G.R.C., K.U.F., N.J.P., R.D.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Artificial Intelligence and Robotics Laboratory (S.-C.P.), Myongji Hospital, Goyang, Korea; Department of Neurosurgery (B.A.G.), U
  • Welch BG; Department of Neurosurgery (P.M.R.L., J.-Y.R., S.-C.P., S.D., M.A.A.-S., G.R.C., K.U.F., N.J.P., R.D.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Artificial Intelligence and Robotics Laboratory (S.-C.P.), Myongji Hospital, Goyang, Korea; Department of Neurosurgery (B.A.G.), U
  • Zusman EE; Department of Neurosurgery (P.M.R.L., J.-Y.R., S.-C.P., S.D., M.A.A.-S., G.R.C., K.U.F., N.J.P., R.D.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Artificial Intelligence and Robotics Laboratory (S.-C.P.), Myongji Hospital, Goyang, Korea; Department of Neurosurgery (B.A.G.), U
  • Weiss ST; Department of Neurosurgery (P.M.R.L., J.-Y.R., S.-C.P., S.D., M.A.A.-S., G.R.C., K.U.F., N.J.P., R.D.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Artificial Intelligence and Robotics Laboratory (S.-C.P.), Myongji Hospital, Goyang, Korea; Department of Neurosurgery (B.A.G.), U
  • Du R; Department of Neurosurgery (P.M.R.L., J.-Y.R., S.-C.P., S.D., M.A.A.-S., G.R.C., K.U.F., N.J.P., R.D.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Artificial Intelligence and Robotics Laboratory (S.-C.P.), Myongji Hospital, Goyang, Korea; Department of Neurosurgery (B.A.G.), U
Neurol Genet ; 8(6): e200040, 2022 Dec.
Article em En | MEDLINE | ID: mdl-36475054
ABSTRACT
Background and

Objectives:

While somatic mutations have been well-studied in cancer, their roles in other complex traits are much less understood. Our goal is to identify somatic variants that may contribute to the formation of saccular cerebral aneurysms.

Methods:

We performed whole-exome sequencing on aneurysm tissues and paired peripheral blood. RNA sequencing and the CRISPR/Cas9 system were then used to perform functional validation of our results.

Results:

Somatic variants involved in supervillin (SVIL) or its regulation were found in 17% of aneurysm tissues. In the presence of a mutation in the SVIL gene, the expression level of SVIL was downregulated in the aneurysm tissue compared with normal control vessels. Downstream signaling pathways that were induced by knockdown of SVIL via the CRISPR/Cas9 system in vascular smooth muscle cells (vSMCs) were determined by evaluating changes in gene expression and protein kinase phosphorylation. We found that SVIL regulated the phenotypic modulation of vSMCs to the synthetic phenotype via Krüppel-like factor 4 and platelet-derived growth factor and affected cell migration of vSMCs via the RhoA/ROCK pathway.

Discussion:

We propose that somatic variants form a novel mechanism for the development of cerebral aneurysms. Specifically, somatic variants in SVIL result in the phenotypic modulation of vSMCs, which increases the susceptibility to aneurysm formation. This finding suggests a new avenue for the therapeutic intervention and prevention of cerebral aneurysms.

Texto completo: 1 Bases de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Revista: Neurol Genet Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Bases de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Revista: Neurol Genet Ano de publicação: 2022 Tipo de documento: Article