Your browser doesn't support javascript.
loading
Planar Chiral Multiple Resonance Thermally Activated Delayed Fluorescence Materials for Efficient Circularly Polarized Electroluminescence.
Liao, Xiang-Ji; Pu, Dongdong; Yuan, Li; Tong, Jingjing; Xing, Shuai; Tu, Zhen-Long; Zuo, Jing-Lin; Zheng, Wen-Hua; Zheng, You-Xuan.
Afiliação
  • Liao XJ; State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
  • Pu D; State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
  • Yuan L; State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
  • Tong J; State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
  • Xing S; State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
  • Tu ZL; State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
  • Zuo JL; State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
  • Zheng WH; Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China.
  • Zheng YX; State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
Angew Chem Int Ed Engl ; 62(6): e202217045, 2023 Feb 01.
Article em En | MEDLINE | ID: mdl-36517419
ABSTRACT
Chiral boron/nitrogen doped multiple resonance thermally activated delayed fluorescence (MR-TADF) emitters are promising for highly efficient and color-pure circularly polarized organic light-emitting diodes (CP-OLEDs). Herein, we report two pairs of MR-TADF materials (Czp-tBuCzB, Czp-POAB) based on planar chiral paracyclophane with photoluminescence quantum yields of up to 98 %. The enantiomers showed symmetric circularly polarized photoluminescence spectra with dissymmetry factors |gPL | of up to 1.6×10-3 in doped films. Meanwhile, the sky-blue CP-OLEDs with (R/S)-Czp-tBuCzB showed an external quantum efficiency of 32.1 % with the narrowest full-width at half-maximum of 24 nm among the reported CP-OLEDs, while the devices with (R/S)-Czp-POAB displayed the first nearly pure green CP electroluminescence with |gEL | factors at the 10-3 level. These results demonstrate the incorporation of planar chirality into MR-TADF emitter is a reliable strategy for constructing of efficient CP-OLEDs.
Palavras-chave

Texto completo: 1 Bases de dados: MEDLINE Idioma: En Revista: Angew Chem Int Ed Engl Ano de publicação: 2023 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Bases de dados: MEDLINE Idioma: En Revista: Angew Chem Int Ed Engl Ano de publicação: 2023 Tipo de documento: Article País de afiliação: China