Your browser doesn't support javascript.
loading
Molecular-dynamics simulation methods for macromolecular crystallography.
Wych, David C; Aoto, Phillip C; Vu, Lily; Wolff, Alexander M; Mobley, David L; Fraser, James S; Taylor, Susan S; Wall, Michael E.
Afiliação
  • Wych DC; Computer, Computational and Statistical Sciences Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA.
  • Aoto PC; Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, USA.
  • Vu L; Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, USA.
  • Wolff AM; Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA.
  • Mobley DL; Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, CA 92697, USA.
  • Fraser JS; Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA.
  • Taylor SS; Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, USA.
  • Wall ME; Computer, Computational and Statistical Sciences Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA.
Acta Crystallogr D Struct Biol ; 79(Pt 1): 50-65, 2023 Jan 01.
Article em En | MEDLINE | ID: mdl-36601807
ABSTRACT
It is investigated whether molecular-dynamics (MD) simulations can be used to enhance macromolecular crystallography (MX) studies. Historically, protein crystal structures have been described using a single set of atomic coordinates. Because conformational variation is important for protein function, researchers now often build models that contain multiple structures. Methods for building such models can fail, however, in regions where the crystallographic density is difficult to interpret, for example at the protein-solvent interface. To address this limitation, a set of MD-MX methods that combine MD simulations of protein crystals with conventional modeling and refinement tools have been developed. In an application to a cyclic adenosine monophosphate-dependent protein kinase at room temperature, the procedure improved the interpretation of ambiguous density, yielding an alternative water model and a revised protein model including multiple conformations. The revised model provides mechanistic insights into the catalytic and regulatory interactions of the enzyme. The same methods may be used in other MX studies to seek mechanistic insights.
Assuntos
Palavras-chave

Texto completo: 1 Bases de dados: MEDLINE Assunto principal: Proteínas / Simulação de Dinâmica Molecular Tipo de estudo: Prognostic_studies Idioma: En Revista: Acta Crystallogr D Struct Biol Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Bases de dados: MEDLINE Assunto principal: Proteínas / Simulação de Dinâmica Molecular Tipo de estudo: Prognostic_studies Idioma: En Revista: Acta Crystallogr D Struct Biol Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Estados Unidos