Reversible Metal and Ligand Redox Chemistry in Two-Dimensional Iron-Organic Framework for Sustainable Lithium-Ion Batteries.
J Am Chem Soc
; 145(3): 1564-1571, 2023 Jan 25.
Article
em En
| MEDLINE
| ID: mdl-36635874
Metal-organic frameworks (MOFs) are emerging as attractive electrode materials for lithium-ion batteries, owing to their fascinating features of sustainable resources, tunable chemical components, flexible molecular skeletons, and renewability. However, they are faced with a limited number of redox-active sites and unstable molecular frameworks during electrochemical processes. Herein, we design a novel two-dimensional (2D) iron(III)-tetraamino-benzoquinone (Fe-TABQ) with dual redox centers of Fe cations and TABQ ligands for high-capacity and stable lithium storage. It is constructed of square-planar Fe-N2O2 linkages and phenylenediamine building blocks, between which the Fe-TABQ chains are connected by multiple hydrogen bonds, and then featured as an extended π-d-conjugated 2D structure. The redox chemistry of both Fe3+ cations and TABQ anions is revealed to render its remarkable specific capacity of 251.1 mAh g-1. Benefiting from the intrinsic robust Fe-N(O) bonds and reinforced Li-N(O) bonds during cycling, Fe-TABQ delivers high capacity retentions over 95% after 200 cycles at various current densities. This work will enlighten more investigations for the molecular designs of advanced MOF-based electrode materials.
Texto completo:
1
Bases de dados:
MEDLINE
Idioma:
En
Revista:
J Am Chem Soc
Ano de publicação:
2023
Tipo de documento:
Article
País de afiliação:
China