Your browser doesn't support javascript.
loading
Reversible Metal and Ligand Redox Chemistry in Two-Dimensional Iron-Organic Framework for Sustainable Lithium-Ion Batteries.
Geng, Jiarun; Ni, Youxuan; Zhu, Zhuo; Wu, Quan; Gao, Suning; Hua, Weibo; Indris, Sylvio; Chen, Jun; Li, Fujun.
Afiliação
  • Geng J; Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (RECAST), Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin300071, China.
  • Ni Y; Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (RECAST), Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin300071, China.
  • Zhu Z; Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (RECAST), Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin300071, China.
  • Wu Q; School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore637459, Singapore.
  • Gao S; Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (RECAST), Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin300071, China.
  • Hua W; Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (RECAST), Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin300071, China.
  • Indris S; School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi710049, China.
  • Chen J; Institute for Applied Materials (IAM), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, D-76344Eggenstein-Leopoldshafen, Germany.
  • Li F; Institute for Applied Materials (IAM), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, D-76344Eggenstein-Leopoldshafen, Germany.
J Am Chem Soc ; 145(3): 1564-1571, 2023 Jan 25.
Article em En | MEDLINE | ID: mdl-36635874
Metal-organic frameworks (MOFs) are emerging as attractive electrode materials for lithium-ion batteries, owing to their fascinating features of sustainable resources, tunable chemical components, flexible molecular skeletons, and renewability. However, they are faced with a limited number of redox-active sites and unstable molecular frameworks during electrochemical processes. Herein, we design a novel two-dimensional (2D) iron(III)-tetraamino-benzoquinone (Fe-TABQ) with dual redox centers of Fe cations and TABQ ligands for high-capacity and stable lithium storage. It is constructed of square-planar Fe-N2O2 linkages and phenylenediamine building blocks, between which the Fe-TABQ chains are connected by multiple hydrogen bonds, and then featured as an extended π-d-conjugated 2D structure. The redox chemistry of both Fe3+ cations and TABQ anions is revealed to render its remarkable specific capacity of 251.1 mAh g-1. Benefiting from the intrinsic robust Fe-N(O) bonds and reinforced Li-N(O) bonds during cycling, Fe-TABQ delivers high capacity retentions over 95% after 200 cycles at various current densities. This work will enlighten more investigations for the molecular designs of advanced MOF-based electrode materials.

Texto completo: 1 Bases de dados: MEDLINE Idioma: En Revista: J Am Chem Soc Ano de publicação: 2023 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Bases de dados: MEDLINE Idioma: En Revista: J Am Chem Soc Ano de publicação: 2023 Tipo de documento: Article País de afiliação: China