Your browser doesn't support javascript.
loading
[Effects of novel bioactive glasses on promoting remineralization of artificial dentin caries].
Guo, R L; Huang, G B; Long, Y Z; Dong, Y M.
Afiliação
  • Guo RL; Department of Cariology and Endodontology, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key
  • Huang GB; Department of Cariology and Endodontology, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key
  • Long YZ; Department of Cariology and Endodontology, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key
  • Dong YM; Department of Cariology and Endodontology, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key
Beijing Da Xue Xue Bao Yi Xue Ban ; 55(1): 82-87, 2023 Feb 18.
Article em Zh | MEDLINE | ID: mdl-36718693
OBJECTIVE: To investigate the effects of novel bioactive glasses (BG) including PSC with high phosphorus component and FBG with fluorine-doped element on promoting remineralization of artificial dentin caries. METHODS: (1) BGs were used in this study as follows: PSC (10.8%P2O5-54.2%SiO2-35.0%CaO, mol.%) were synthesized using phytic acid as the phosphorus precursor through sol-gel method. FBG (6.1%P2O5-37.0%SiO2-53.9%CaO-3.0%CaF2, mol.%) and 45S5(6.0%P2O5-45.0%SiO2-24.5%CaO-24.5%Na2O, mol.%) were synthesized by traditional melt method. (2) The above BGs were soaked in simulated body fluid (SBF) for 24 hours. Then X-ray diffraction (XRD) was used to analyze the formation of hydroxyapatite (HA) crystals. (3) Prepared 1 mm thick dentin slices were soaked in 17% ethylene diamine tetraacetic acid (EDTA) for 1 week to demineralize the dentin. Then the dentin slices treated by BG were soaked in SBF for 1 week. Field emission scanning electron micro-scopy (FE-SEM) was used to observe the surface morphology of the dentin slices. (4) Four cavities were prepared to 1 mm depth in each 2 mm thick dentin slice, then were treated with lactic acid for 2 weeks to form the artificial dentin caries. Wax, mineral trioxide aggregate (MTA), PSC and FBG were used to fill four cavities as blank control group, MTA group, PSC group and FBG group respectively. Then the spe-cimens were soaked in SBF for 4 weeks. The changes of depth and density of demineralized dentin were analyzed using Micro-CT before filling and after 2 and 4 weeks filling. RESULTS: (1) PSC and FBG promoted mineral formation on the surfaces of the demineralized dentin. And the speed was faster and crystallinity was higher in PSC group than the FBG and 45S5 groups. (2) The increased mineral density of artificial dentin caries in PSC group were (185.98 ± 55.66) mg/cm3 and (213.64 ± 36.01) mg/cm3 2 and 4 weeks after filling respectively, which were significantly higher than the control group [(20.38 ± 7.55) mg/cm3, P=0.006; (36.46 ± 10.79) mg/cm3, P=0.001]. At meanwhile, PSC group was also higher than MTA group [(57.29 ± 10.09) mg/cm3; (111.02 ± 22.06) mg/cm3], and it had statistical difference (P=0.015; P=0.006). The depth of remineralized dentin in PSC group were (40.0 ± 16.9) µm and (54.5 ± 17.8) µm 2 and 4 weeks respectively, which were also statistically different from the control group (P =0.010;P=0.001). There were no statistical differences between the control group and MTA group. The above effects of FBG group were between PSC and MTA. CONCLUSION: PSC has advantages in the speed, quality and depth of mineral deposition in the demineralized layer of artificial dentin caries. It would be expected to be an ideal material to promote the remineralization of dentin caries.
Assuntos
Palavras-chave

Texto completo: 1 Bases de dados: MEDLINE Assunto principal: Dióxido de Silício / Dentina Idioma: Zh Revista: Beijing Da Xue Xue Bao Yi Xue Ban Assunto da revista: MEDICINA Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Bases de dados: MEDLINE Assunto principal: Dióxido de Silício / Dentina Idioma: Zh Revista: Beijing Da Xue Xue Bao Yi Xue Ban Assunto da revista: MEDICINA Ano de publicação: 2023 Tipo de documento: Article