Your browser doesn't support javascript.
loading
Graphdiyne-Based Single-Atom Catalysts with Different Coordination Environments.
Fu, Xinliang; Zhao, Xin; Lu, Tong-Bu; Yuan, Mingjian; Wang, Mei.
Afiliação
  • Fu X; Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, No. 94 Weijin Road, Nankai District, Tianjin, 300071, P. R. China.
  • Zhao X; School of Materials Science and Engineering, Institute for New Energy Materials & Low Carbon Technologies, Tianjin University of Technology, No. 391 Bin Shui Xi Dao Road, Xiqing District, Tianjin, 300384, P. R. China.
  • Lu TB; School of Materials Science and Engineering, Institute for New Energy Materials & Low Carbon Technologies, Tianjin University of Technology, No. 391 Bin Shui Xi Dao Road, Xiqing District, Tianjin, 300384, P. R. China.
  • Yuan M; Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, No. 94 Weijin Road, Nankai District, Tianjin, 300071, P. R. China.
  • Wang M; School of Materials Science and Engineering, Institute for New Energy Materials & Low Carbon Technologies, Tianjin University of Technology, No. 391 Bin Shui Xi Dao Road, Xiqing District, Tianjin, 300384, P. R. China.
Angew Chem Int Ed Engl ; 62(16): e202219242, 2023 Apr 11.
Article em En | MEDLINE | ID: mdl-36723492
As a special carbon material, graphdiyne (GDY) features the superiorities of incomplete charge transfer effect on the atomic level, tunable electronic structure and anchoring metal atoms directly with organometallic coordination bonds M (metal)-C (alkynyl carbon in GDY), providing it an ideal platform to construct single-atom catalysts (ACs). The coordination environment of single atoms anchored on GDY plays a key role in their catalytic performance. The mini-review highlights state-of-the-art progress in the rational design of GDY-based ACs and their applications, and mainly reveals the relationship between the coordination engineering of the GDY-based ACs and corresponding catalytic performance. Finally, some prospects concerning the future development of GDY-based ACs in energy conversion are also discussed.
Palavras-chave

Texto completo: 1 Bases de dados: MEDLINE Idioma: En Revista: Angew Chem Int Ed Engl Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Bases de dados: MEDLINE Idioma: En Revista: Angew Chem Int Ed Engl Ano de publicação: 2023 Tipo de documento: Article