Your browser doesn't support javascript.
loading
Deep learning model integrating positron emission tomography and clinical data for prognosis prediction in non-small cell lung cancer patients.
Oh, Seungwon; Kang, Sae-Ryung; Oh, In-Jae; Kim, Min-Soo.
Afiliação
  • Oh S; Department of Mathematics and Statistics, Chonnam National University, Gwangju, Republic of Korea.
  • Kang SR; Department of Nuclear Medicine, Chonnam National University Medical School and Hwasun Hospital, Hwasun, Jeonnam, Republic of Korea.
  • Oh IJ; Department of Internal Medicine, Chonnam National University Medical School and Hwasun Hospital, Hwasun, Jeonnam, Republic of Korea. droij@jnu.ac.kr.
  • Kim MS; Department of Mathematics and Statistics, Chonnam National University, Gwangju, Republic of Korea. kimms@jnu.ac.kr.
BMC Bioinformatics ; 24(1): 39, 2023 Feb 06.
Article em En | MEDLINE | ID: mdl-36747153
BACKGROUND: Lung cancer is the leading cause of cancer-related deaths worldwide. The majority of lung cancers are non-small cell lung cancer (NSCLC), accounting for approximately 85% of all lung cancer types. The Cox proportional hazards model (CPH), which is the standard method for survival analysis, has several limitations. The purpose of our study was to improve survival prediction in patients with NSCLC by incorporating prognostic information from F-18 fluorodeoxyglucose positron emission tomography (FDG PET) images into a traditional survival prediction model using clinical data. RESULTS: The multimodal deep learning model showed the best performance, with a C-index and mean absolute error of 0.756 and 399 days under a five-fold cross-validation, respectively, followed by ResNet3D for PET (0.749 and 405 days) and CPH for clinical data (0.747 and 583 days). CONCLUSION: The proposed deep learning-based integrative model combining the two modalities improved the survival prediction in patients with NSCLC.
Assuntos
Palavras-chave

Texto completo: 1 Bases de dados: MEDLINE Assunto principal: Carcinoma Pulmonar de Células não Pequenas / Aprendizado Profundo / Neoplasias Pulmonares Tipo de estudo: Observational_studies / Prognostic_studies / Risk_factors_studies Limite: Humans Idioma: En Revista: BMC Bioinformatics Assunto da revista: INFORMATICA MEDICA Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Bases de dados: MEDLINE Assunto principal: Carcinoma Pulmonar de Células não Pequenas / Aprendizado Profundo / Neoplasias Pulmonares Tipo de estudo: Observational_studies / Prognostic_studies / Risk_factors_studies Limite: Humans Idioma: En Revista: BMC Bioinformatics Assunto da revista: INFORMATICA MEDICA Ano de publicação: 2023 Tipo de documento: Article