Your browser doesn't support javascript.
loading
Observation of Weyl Interface States in Non-Hermitian Synthetic Photonic Systems.
Song, Wange; Wu, Shengjie; Chen, Chen; Chen, Yuxin; Huang, Chunyu; Yuan, Luqi; Zhu, Shining; Li, Tao.
Afiliação
  • Song W; National Laboratory of Solid State Microstructures, Key Laboratory of Intelligent Optical Sensing and Integration, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China.
  • Wu S; National Laboratory of Solid State Microstructures, Key Laboratory of Intelligent Optical Sensing and Integration, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China.
  • Chen C; National Laboratory of Solid State Microstructures, Key Laboratory of Intelligent Optical Sensing and Integration, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China.
  • Chen Y; National Laboratory of Solid State Microstructures, Key Laboratory of Intelligent Optical Sensing and Integration, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China.
  • Huang C; National Laboratory of Solid State Microstructures, Key Laboratory of Intelligent Optical Sensing and Integration, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China.
  • Yuan L; State Key Laboratory of Advanced Optical Communication Systems and Networks, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China.
  • Zhu S; National Laboratory of Solid State Microstructures, Key Laboratory of Intelligent Optical Sensing and Integration, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China.
  • Li T; National Laboratory of Solid State Microstructures, Key Laboratory of Intelligent Optical Sensing and Integration, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China.
Phys Rev Lett ; 130(4): 043803, 2023 Jan 27.
Article em En | MEDLINE | ID: mdl-36763423
ABSTRACT
Weyl medium has triggered remarkable interest owing to its nontrivial topological edge states in 3D photonic band structures that were mainly revealed as surface modes yet. It is undoubted that the connection of two different Weyl media will give rise to more fruitful physics at their interface, while they face extreme difficulty in high-dimensional lattice matching. Here, we successfully demonstrate the non-Hermitian Weyl interface physics in complex synthetic parameter space, which is implemented in a loss-controlled silicon waveguide array. By establishing non-Hermitian Hamiltonian in the parameter space, new Weyl interfaces with distinct topological origins are predicted and experimentally observed in silicon waveguides. Significantly, our Letter exploits the non-Hermitian parameter to create the synthetic dimension by manipulating the non-Hermitian order, which successfully circumvents the difficulty in lattice matching for high-dimensional interfaces. The revealed rich topological Weyl interface states and their phase transitions in silicon waveguide platform further imply potentials in chip-scale photonics integrations.

Texto completo: 1 Bases de dados: MEDLINE Idioma: En Revista: Phys Rev Lett Ano de publicação: 2023 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Bases de dados: MEDLINE Idioma: En Revista: Phys Rev Lett Ano de publicação: 2023 Tipo de documento: Article País de afiliação: China